An accurate diagnosis is significant for the treatment of any disease in its early stage. Content-Based Medical Image Retrieval (CBMIR) is used to find similar medical images in a huge database to help radiologists in diagnosis. The main difficulty in CBMIR is semantic gaps between the lower-level visual details, captured by computer-aided tools and higher-level semantic details captured by humans. Many existing methods such as Manhattan Distance, Triplet Deep Hashing, and Transfer Learning techniques for CBMIR were developed but showed lower efficiency and the computational cost was high. To solve such issues, a new feature extraction approach is proposed using Histogram of Gradient (HoG) with Local Ternary Pattern (LTP) to automatically retrieve medical images from the Contrast-Enhanced Magnetic Resonance Imaging (CE-MRI) database. Adam optimization algorithm is utilized to select features and the Euclidean measure calculates the similarity for query images. From the experimental analysis, it is clearly showing that the proposed HoG-LTP method achieves higher accuracy of 98.8%, a sensitivity of 98.5%, and a specificity of 99.416%, which is better when compared to the existing Random Forest (RF) method which displayed an accuracy, sensitivity, and specificity of 81.1%, 81.7% and 90.5% respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.