Leader election protocols are fundamental for coordination problems-such as consensus-in distributed computing. Recently, hierarchical leader election protocols have been proposed for dynamic systems where processes can dynamically join and leave, and no process has global information. However, quantitative analysis of such protocols is generally lacking. In this paper, we present a probabilistic model checking based approach to verify quantitative properties of these protocols. Particularly, we employ the compositional technique in the style of assume-guarantee reasoning such that the sub-protocols for each of the two layers are verified separately and the correctness of the whole protocol is guaranteed by the assume-guarantee rules. Moreover, within this framework we also augment the proposed model with additional features such as rewards. This allows the analysis of time or energy consumption of the protocol. Experiments have been conducted to demonstrate the effectiveness of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.