Graphene, the two-dimensional form of carbon, has received a great deal of attention across academia and industry due to its extraordinary electrical, mechanical, thermal, chemical, and optical properties. In view of the potential impact of graphene on numerous and diverse applications in electronics, novel materials, energy, transport, and healthcare, large-scale graphene production is a challenge that must be addressed. In the past decade, top-down production has demonstrated high potential for scale-up. This review features the recent progress made in top-down production methods that have been proposed for the manufacturing of graphene-based products. Fabrication methods such as liquidphase mechanical, chemical and electrochemical exfoliation of graphite are outlined, with a particular focus on nonoxidizing routes for graphene production. Analysis of exfoliation mechanisms, solvent considerations, key advantages and issues, and important production characteristics including production rate and yield, where applicable, are outlined. Future challenges and opportunities in graphene production are also highlighted. V C 2018 American Institute of Chemical Engineers AIChE J, 00: 000-000, 2018 a) Scanning Electron Microscopy (SEM) image of expanded highly orientated pyrolytic graphite from Cooper et al. (b-c) TEM images of mono-and multilayer graphene from Qian et al. d) SEM image of GO from Voiry et al. e) High resolution TEM (HRTEM) image of single layer reduced graphene oxide with indications of holes (red arrow) and oxygen functional groups (blue arrow) from Voiry et al. Reproduced with permission from Ref. 15-17.
Shear-assisted liquid exfoliation is a primary candidate for producing defect-free two-dimensional (2D) materials. A range of approaches that delaminate nanosheets from layered precursors in solution have emerged in recent years. Diverse hydrodynamic conditions exist across these methods, and combined with low-throughput, high-cost characterization techniques, strongly contribute to the wide variability in performance and material quality. Nanosheet concentration and production rate are usually correlated against operating parameters unique to each production method, making it difficult to compare, optimize and predict scale-up performance. Here, we reveal the shear exfoliation mechanism from precursor to 2D material and extract the derived hydrodynamic parameters and scaling relationship that are key to nanomaterial output and common to all shear exfoliation processes. Our investigations use conditions created from two different hydrodynamic instabilities-Taylor vortices and interfacial waves-and combine materials characterization, fluid dynamics experiments and numerical simulations. Using graphene as the prototypical 2D material, we find that scaling of concentration of few-layer nanosheets depends on local strain rate distribution, relationship to the critical exfoliation criterion, and precursor residence time. We report a transmission-reflectance method to measure concentration profiles in real-time, using low-cost optoelectronics and without the need to remove the layered precursor material from the dispersion. We show that our high-throughput, in situ approach has broad uses by controlling the number of atomic layers on-the-fly, rapidly optimizing green solvent design to maximize yield, and viewing live production rates. Combining the findings on the hydrodynamics of exfoliation with this monitoring technique, we unlock targeted process intensification, quality control, batch traceability and individually customizable 2D materials on-demand.
<div>Shear-assisted liquid exfoliation is a primary candidate for producing defect-free two-dimensional materials from labs to industry. Diverse hydrodynamic conditions exist across production methods, and combined with low-throughput, high-cost characterization techniques, strongly contribute to the wide variability in performance and material quality. Through investigations on strikingly different flow regimes, and using graphene as the prototypical two-dimensional material, we find that scaling of production depends on local stress fi eld distributions and precursor residence time. We report a novel indirect diffuse reflectance method to measure graphene concentration in real-time, using low-cost optoelectronics and without the need to remove the precursor material from the heterogeneous dispersions. We show that this high-throughput, <i>in situ</i> approach has broad applicability by controlling the number of atomic layers on the fly, rapidly optimising green solvent design for maximum yield, and viewing live production rates. Combining insights on the hydrodynamics of exfoliation with this scalable monitoring technique, targeted process intensi fication, quality control, batch traceability and individually customisable materials on-demand are possible.</div>
<div>Shear-assisted liquid exfoliation is a primary candidate for producing defect-free two-dimensional materials from labs to industry. Diverse hydrodynamic conditions exist across production methods, and combined with low-throughput, high-cost characterization techniques, strongly contribute to the wide variability in performance and material quality. Through investigations on strikingly different flow regimes, and using graphene as the prototypical two-dimensional material, we find that scaling of production depends on local stress fi eld distributions and precursor residence time. We report a novel indirect diffuse reflectance method to measure graphene concentration in real-time, using low-cost optoelectronics and without the need to remove the precursor material from the heterogeneous dispersions. We show that this high-throughput, <i>in situ</i> approach has broad applicability by controlling the number of atomic layers on the fly, rapidly optimising green solvent design for maximum yield, and viewing live production rates. Combining insights on the hydrodynamics of exfoliation with this scalable monitoring technique, targeted process intensi fication, quality control, batch traceability and individually customisable materials on-demand are possible.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.