Since 1998, there have been great advances in our understanding of the pathogenesis of dyskeratosis congenita (DC), a rare inherited bone marrow failure and cancer predisposition syndrome with prominent mucocutaneous abnormalities and features of premature aging. DC is now characterized molecularly by the presence of short age-adjusted telomeres. Mutations in seven genes have been unequivocally associated with DC, each with a role in telomere length maintenance. These observations, combined with knowledge that progressive telomere shortening can impose a proliferative barrier on dividing cells and contribute to chromosome instability, have led to the understanding that extreme telomere shortening drives the clinical features of DC. However, some of the genes implicated in DC encode proteins that are also components of H/ACA-ribonucleoprotein enzymes, which are responsible for the posttranslational modification of ribosomal and spliceosomal RNAs, raising the question whether alterations in these activities play a role in the pathogenesis of DC. In addition, recent reports suggest that some cases of DC may not be characterized by short age-adjusted telomeres. This review will highlight our current knowledge of the telomere length defects in DC and the factors involved in its development.
Dyskeratosis congenita (DC) is a telomere-biology disorder characterized by a mucocutaneous triad, aplastic anemia, and predisposition to cancer. Mutations in a narrow segment of TINF2 exon 6 have been recognized to cause often-severe DC that is either sporadic or autosomal dominant. We describe three children with very early presentations of DC, including one with the severe variant known as Revesz syndrome. Whereas most TINF2 mutations reported to date are missense changes, each of our patients carried a novel heterozygous nonsense or frameshift mutation, revealing a new 5’ boundary to the affected gene segment in patients with DC. Examination of patient-derived lymphoblastoid cell lines revealed stable expression of the predicted truncated TIN2 proteins. In co-immunoprecipitation assays, the ability of a truncation mutant to interact with TRF1 was severely impaired, whereas the ability of the most common DC-associated mutant was much less affected. This suggests that disruption of TIN2-TRF1 interaction may contribute to the severe clinical phenotype observed in the context of the TIN2 truncation mutation but is unlikely to be the primary cause of telomere shortening associated with the more prevalent TIN2 missense mutations. Telomere flow-FISH analysis of one pedigree demonstrated the dramatic effect a de novo nonsense TINF2 mutation had on telomere length in early development. These cases underscore the severe manifestations of truncating TINF2 mutations.
TIN2 is central to the shelterin complex, linking the telomeric proteins TRF1 and TRF2 with TPP1/POT1. Mutations in TINF2, which encodes TIN2, that are found in dyskeratosis congenita (DC) result in very short telomeres and cluster in a region shared by the two TIN2 isoforms, TIN2S (short) and TIN2L (long). Here we show that TIN2L, but not TIN2S, is phosphorylated. TRF2 interacts more with TIN2L than TIN2S, and both the DC cluster and phosphorylation promote this enhanced interaction. The binding of TIN2L, but not TIN2S, is affected by TRF2-F120, which is also required for TRF2's interaction with end processing factors such as Apollo. Conversely, TRF1 interacts more with TIN2S than with TIN2L. A DC-associated mutation further reduces TIN2L-TRF1, but not TIN2S-TRF1, interaction. Cells overexpressing TIN2L or phosphomimetic TIN2L are permissive to telomere elongation, whereas cells overexpressing TIN2S or phosphodead TIN2L are not. Telomere lengths are unchanged in cell lines in which TIN2L expression has been eliminated by clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated mutation. These results indicate that TIN2 isoforms are biochemically and functionally distinguishable and that shelterin composition could be fundamentally altered in patients with TINF2 mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.