Langerhans cells (LCs) reside in the epidermis as a dense network of immune system sentinels, coordinating both immunogenic and tolerogenic immune responses. To determine molecular switches directing induction of LC immune activation, we performed mathematical modelling of gene regulatory networks identified by single cell RNA sequencing of LCs exposed to TNF-alpha, a key pro-inflammatory signal produced by the skin. Our approach delineated three programmes of LC phenotypic activation (immunogenic, tolerogenic or ambivalent), and confirmed that TNF-alpha enhanced LC immunogenic programming. Through regulon analysis followed by mutual information modelling, we identified IRF1 as the key transcription factor for the regulation of immunogenicity in LCs. Application of a mathematical toggle switch model, coupling IRF1 with tolerance-inducing transcription factors, determined the key set of transcription factors regulating the switch between tolerance and immunogenicity, and correctly predicted LC behaviour in LCs derived from different body sites. Our findings provide a mechanistic explanation of how combinatorial interactions between different transcription factors can coordinate specific transcriptional programmes in human LCs, interpreting the microenvironmental context of the local tissue microenvironments.
We compared outer and inner foreskin tissue from adolescent males undergoing medical male circumcision to better understand signals that increase HIV target cell availability in the foreskin. We measured chemokine gene expression and the impact of sexually transmitted infections (STIs) on the density and location of T and Langerhans cells. Chemokine C-C ligand 27 (CCL27) was expressed 6.94-fold higher in the inner foreskin when compared to the outer foreskin. We show that the density of CD4+CCR5+ cells/mm2 was higher in the epithelium of the inner foreskin, regardless of STI status, in parallel with higher CCL27 gene expression. In the presence of STIs, there were higher numbers of CD4+CCR5+ cells/mm2 cells in the sub-stratum of the outer and inner foreskin with concurrently higher number of CD207+ Langerhans cells (LC) in both tissues, with the latter cells being closer to the keratin surface of the outer FS in the presence of an STI. When we tested the ability of exogenous CCL27 to induce T cell migration in foreskin tissue, CD4+ T cells were able to relocate to the inner foreskin epithelium in response. We provide novel insight into the impact CCL27 and STIs on immune and HIV-1 target cell changes in the foreskin.
ESI and APCI full scan methods proved to be capable of detecting any drug metabolites present in reasonable concentrations, and are useful when employed in addition to selective scan methods that target low level expected metabolites. APPI can be a valuable alternative for detecting expected metabolites due to good signal-to-noise (S/N) ratio.
Several strategies to discover new antimalarials have been proposed to augment and complement the conventional drug-discovery paradigm. One approach, which has not yet been fully exploited, is the use of drug biotransformation to identify new active molecules. This concept rests on the use of the biotransformation of drugs to their pharmacologically active metabolites. This approach has been used successfully in human chemotherapy, with the discovery and development of several metabolite-based drugs. This review looks at the contribution that biotransformations can play in antimalarial drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.