The ability to tune magnetic orders, such as magnetic anisotropy and topological spin texture, is desired in order to achieve high-performance spintronic devices. A recent strategy has been to employ interfacial engineering techniques, such as the introduction of spin-correlated interfacial coupling, to tailor magnetic orders and achieve novel magnetic properties. We chose a unique polar-nonpolar LaMnO3/SrIrO3 superlattice because Mn (3d)/Ir (5d) oxides exhibit rich magnetic behaviors and strong spin-orbit coupling through the entanglement of their 3d and 5d electrons. Through magnetization and 3 magnetotransport measurements, we found that the magnetic order is interface-dominated as the superlattice period is decreased. We were able to then effectively modify the magnetization, tilt of the ferromagnetic easy axis, and symmetry transition of the anisotropic magnetoresistance of the LaMnO3/SrIrO3 superlattice by introducing additional Mn (3d) and Ir (5d) interfaces. Further investigations using in-depth first-principles calculations and numerical simulations revealed that these magnetic behaviors could be understood by the 3d/5d electron correlation and Rashba spin-orbit coupling.The results reported here demonstrate a new route to synchronously engineer magnetic properties through the atomic stacking of different electrons, contributing to future applications.
The pyrochlore lattice involves corner sharing tetrahedra and the resulting geometric frustration is believed to suppress any antiferromagnetic order for Mott insulators on this structure. There are nevertheless short-range correlations which could be vital near the Mott-Hubbard insulator-metal transition. We use a static auxiliaryfield-based Monte Carlo to study this problem in real space on reasonably large lattices. The method reduces to unrestricted Hartree-Fock at zero temperature but captures the key magnetic fluctuations at finite temperature. Our results reveal that increasing interaction drives the non magnetic (semi) metal to a 'spin disordered' metal with small local moments, at some critical coupling, and then, through a small pseudogap window, to a large moment, gapped, Mott insulating phase at a larger coupling. The spin disordered metal has a finite residual resistivity which grows with interaction strength, diverging at the upper coupling. We present the resistivity, optical conductivity, and density of states across the metal-insulator transition and for varying temperature. These results set the stage for the more complex cases of Mott transition in the pyrochlore iridates and molybdates.
We report the numerical investigation of strain induced superconductor-insulator quantum phase transition on a Lieb lattice. Based on a non perturbative Monte Carlo technique we show that in two dimensions an s-wave superconductor undergoes transition to a highly correlated Bosonic insulator under the influence of strain, applied as staggered hopping amplitudes. To the best of our knowledge, this is the first work to report theoretical investigation of "disorder free" superconductor-insulator phase transition in systems with Lieb lattice structure. With the recent experimental realization of the Lieb lattice in ultracold atomic gases, photonic lattices as well as in solid state systems, we believe that the results presented in this paper would be of importance to initiate experimental investigation of such novel quantum phase transitions. We further discuss the fate of such systems at finite temperature, highlighting the effect of fluctuations on the superconducting pair formations, thermal scales and quasiparticle behavior. The high temperature quasiparticle signatures discussed in this paper are expected to serve as benchmarks for experiments such as radio frequency and momentum resolved radio frequency spectroscopy measurements carried out on systems such as ultracold atomic gases.
The Shastry-Sutherland model and its generalizations have been shown to capture emergent complex magnetic properties from geometric frustration in several quasi-two-dimensional quantum magnets. Using an sd exchange model, we show here that metallic Shastry-Sutherland magnets can exhibit a topological Hall effect driven by magnetic skyrmions under realistic conditions. The magnetic properties are modeled with competing symmetric Heisenberg and asymmetric Dzyaloshinskii-Moriya exchange interactions, while a coupling between the spins of the itinerant electrons and the localized moments describes the magnetotransport behavior. Our results, employing complementary Monte Carlo simulations and a novel machine learning analysis to investigate the magnetic phases, provide evidence for field-driven skyrmion crystal formation for an extended range of Hamiltonian parameters. By constructing an effective tight-binding model of conduction electrons coupled to the skyrmion lattice, we clearly demonstrate the appearance of the topological Hall effect. We further elaborate on the effects of finite temperatures on both magnetic and magnetotransport properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.