Stunting is a global health problem. Based on WHO data, there are 161 million children who experience stunting. Breastmilk supplementation in the form of Moringa oleifera leaves powder is known to be beneficial in suppressing the stunting incidence. Moringa oleifera leaves powder contains protein, micronutrients, and minerals such as calcium, iron, sodium, vitamins C and E, beta carotene, and antioxidants (flavonoid acids, phenolic acids, glucosinolates, isothiocyanates, and saponins). The use of Moringa oleifera leaves powder in stunting cases has been carried out, but further studies in the aspects of nutrigenomics and molecular biology have not been conducted. This study is a literature review of relevant articles from www.pubmed.com, www.sciencedirect.com, and scholar.google.com. The author used keywords "stunting", "nutrigenomics", "biomolecular", and "Moringa oleifera". Pathogenic microbe such as Shigella and pathogenic E. coli ingestion can cause changes in DNA sequences in the stunting pathogenesis. Moringa oleifera leave powder can pass through nutrigenomic and biomolecular mechanisms. Some macro and micromolecules of Moringa oleifera leaves powder such as folate plays a role in DNA methylation; vegetable protein and fatty acids act as promoters in DNA sequences; vitamins act as cofactors for enzymes, antioxidant, and antiinflammation. Seeing various potential mechanisms in the aspects of nutrigenomic and molecular biology, Moringa oleifera leaves powder can be used in overcoming stunting. Further research is needed to give more review about cytokines and molecules included in this literature review.
Tuberculosis in children is a global health problem that decreases the quality of life of children. Based on data from the Indonesian Ministry of Health in 2016, nearly 69.000 children had tuberculosis and the case keeps increasing every year. Moringa oleifera leaf nanoemulsion syrup has immunonutrition and hepatoprotectant effects in children with tuberculosis. Moringa oleifera leaf nanoemulsion syrup contains proteins, micronutrients, and minerals which have a biological role as an immunity agent and prevent toxic effects of tuberculosis drugs. Until now, the use of Moringa oleifera leaf nanoemulsion syrup has been carried out for the immunomodulatory and hepatoprotective aspects. Immunomodulatory and hepatoprotective aspects will be discussed further in this literature review. The sources of articles in this literature review are pubmed.com, ncbi.com, plosone.com, sciencedirect.com, and googleschoolar.com from 2010-2020, except when there is no new research against the article. The authors searched for the keywords: "immunonutrition", "tuberculosis in children", "hepatoprotectant", and "Moringa oleifera". As an immunomodulator, Moringa oleifera leaf nanoemulsion syrup stimulate activation of polimorphonuclear (PMN) cells. As a hepatoprotectant, Moringa oleifera leaf nanoemulsion syrup work by reducing the side effects of conventional tuberculosis drugs such as rifampicin by suppressing the action of cytochrome p450 (CYP1A2 and CYP2B), thus decreases the production of toxic hydrazine which causes liver toxicity in tuberculosis patient. Seeing the various interests in the immunomodulatory and hepatoprotective aspects, Moringa oleifera leaf nanoemulsion syrup can be used as an adjuvant therapy in overcoming tuberculosis in children by stimulating the activation of immunity cell such as PMN, increasing nutrient absorption, and suppressing the action of cytochrome p450 (CYP1A2 and CYP2B).
Tuberculosis is a global health problem with a total of 1.4 million cases in 2015. Over the last decade, several studies have demonstrated the potential role of gut-lung axis in the treatment of tuberculosis. The exact mechanism of the gut-lung axis on tuberculosis is still unknown, however modulation of the gut-lung axis can be performed via probiotic administration. The administered probiotics are capable of inducing an immunomodulating effect which helps in the process of tuberculosis infection. One of the molecules that can be activated with probiotics and plays a role in tuberculosis infection is granulocyte macrophage-colony stimulating factor (GM-CSF). GM-CSF can control intracellular production of M. tuberculosis, inflammation in granulomas, and lung tissue reparation. This article aimed to explore the role of the gut-lung axis, GM-CSF, and the potential of probiotic-based therapy on active tuberculosis infection. It was found that probiotics mediate the immune response via the activation of several inflammatory cytokines and interleukins related to lung infection, but not directly with the tuberculosis pathogen. Thus, probiotic-based therapy has the potential to increase immunity during active tuberculosis infection. Further studies to explore the other mechanisms of the gut-lung axis against tuberculosis through probiotic administration need to be performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.