Good governance was a government whose programs were known and beneficial to the people. In Bali Provincial Government which has duty in disseminating information is Bureau of Public Relations Regional Secretariat Bali through media owned. Because at the time of news input to the media in this case Public Relations Bureau website was not included causing the emergence of problems in the form of difficulty knowing the news, which news that goes into certain categories. Clustering was a method to solve the problem. One of the algorithms used in the Clustering method is the K-Means algorithm. This study focused on designing to classify news data into a category using K-Means. To process the documents obtained to make it easier in the process of clustering, was done by preprocess documents first. Document preparation consists of case folding, tokenization, filtering and stemming. Tf-Idf was done to pass the weighting of the terms obtained on the preprocessed documents. The results of experiments conducted using different amounts of data that are 50, 100, 200, 300, 400, and 500 data obtained results that the K-Means algorithm applied to cluster news, able to work and provide a satisfactory accuracy, Precision average of 70.76% while Recall of 70.86% and Purity of 0.76 for all test data. Intisari-Pemerintahan yang baik adalah pemerintahan yang program-programnya diketahui dan bermanfaat bagi masyarakatnya. Pada Pemerintah Provinsi Bali yang memiliki tupoksi dalam melakukan penyebarluasan informasi adalah Biro Humas Setda Provinsi Bali melalui media yang dimiliki. Dikarenakan pada saat input berita ke media dalam hal ini website Biro Humas tidak disertakan kategori menyebabkan timbulnya permasalahan berupa sulitnya mengetahui beritaberita yang mana saja yang masuk ke kategori tertentu.Clustering merupakan metode untuk mengatasi permasalahan tersebut. Salah satu algoritma yang digunakan dalam metode Clustering adalah algoritma K-Means. Penelitian ini berfokus pada perancangan untuk mengelompokan data berita ke suatu kategori dengan menggunakan K-Means. Untuk mengolah dokumen yang didapat agar lebih mempermudah dalam proses clustering, dilakukanlah preprocessing dokumen terlebih dahulu. Preprocessing dokumen terdiri dari case folding, tokenization, filtering dan stemming. Tf-Idf dilakukan untuk melalukan pembobotan terhadap term yang didapatkan pada preprocessing dokumen. Hasil coba yang dilakukan dengan menggunakan jumlah data yang berbeda yaitu 50, 100, 200, 300, 400, dan 500 data didapatkan hasil bahwa algoritma K-Means yang diterapkan untuk meng cluster berita, mampu bekerja dan memberikan akurasi yang memuaskan, dengan rata-rata Precision sebesar 70,76% sedangkan Recall sebesar 70,86% serta Purity sebesar 0,76 untuk semua data uji.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.