Introduction: Diabetes is often accompanied by undiagnosed dyslipidemia. The aim of the study is to investigate the clinical relevance of lipid profiles and lipid ratios as predictive biochemical models for glycemic control in patients with type 2 diabetes mellitus (T2DM). Methods: This is a retrospective study recruiting 140 patients with T2DM during a one-year period, 2018–2019, at the Diabetic Center Sanglah General Hospital and Internal Medicine Polyclinic Puri Raharja General Hospital. Demographic characteristics, glycosylated hemoglobin (HBA1c) , and lipid profile were recorded and analyzed using SPSS version 25.0 for Windows. The sample is then classified into good (HBA1c≤7) and poor (HBA1c>7) glycemic control. Risk analysis model, receiver operator characteristics (ROC) analysis, and correlation test were used to evaluate the association of HBA1c level with lipid profile and lipid ratio parameters. Result: Lipid profile findings such as total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) , triglycerides (TG), and lipid ratio parameter (LDL-C to high-density lipoprotein cholesterol (HDL-C) ratio) were higher in patients in the poor glycemic control group ( p <0.05) and HDL-C was significantly lower in patients with poor glycemic control ( p =0.001). There is a significant positive correlation between LDL, total cholesterol, LDL-C, TG, and TC to HDL-C ratio, triglycerides, and TC/HDL-C ratio with HBA1c level. Meanwhile, a negative correlation was observed on HDL-C with the HBA1c level. Only TC/HDL-C ratio and LDL-C/HDL-C ratio parameters may be used as predictive models (AUC>0.7), with cutoff point, sensitivity, and specificity of 4.68 (77%; 52%) and 3.06 (98%; 56%) respectively. A risk analysis model shows that the LDL-C/HDL-C ratio parameter is the most influential risk factor in the occurrence of poor glycemic control (adjusted OR =38.76; 95% CI: 27.32–56.64; p <0.001). Conclusion: Lipid profiles (LDL-C) and lipid ratios (LDL-C/HDL-C and TC/HDL-C ratio) show potential markers that can be used in predicting glycemic control in patients with T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.