Coral bleaching is the detrimental expulsion of algal symbionts from their cnidarian hosts, and predominantly occurs when corals are exposed to thermal stress. The incidence and severity of bleaching is often spatially heterogeneous within reef-scales (<1 km), and is therefore not predictable using conventional remote sensing products. Here, we systematically assess the relationship between in situ measurements of 20 environmental variables, along with seven remotely sensed SST thermal stress metrics, and 81 observed bleaching events at coral reef locations spanning five major reef regions globally. We find that high-frequency temperature variability (i.e., daily temperature range) was the most influential factor in predicting bleaching prevalence and had a mitigating effect, such that a 1 °C increase in daily temperature range would reduce the odds of more severe bleaching by a factor of 33. Our findings suggest that reefs with greater high-frequency temperature variability may represent particularly important opportunities to conserve coral ecosystems against the major threat posed by warming ocean temperatures.
Success and impact metrics in science are based on a system that perpetuates sexist and racist “rewards” by prioritizing citations and impact factors. These metrics are flawed and biased against already marginalized groups and fail to accurately capture the breadth of individuals’ meaningful scientific impacts. We advocate shifting this outdated value system to advance science through principles of justice, equity, diversity, and inclusion. We outline pathways for a paradigm shift in scientific values based on multidimensional mentorship and promoting mentee well-being. These actions will require collective efforts supported by academic leaders and administrators to drive essential systemic change.
Background: Peer reviewed research is paramount to the advancement of science. Ideally, the peer review process is an unbiased, fair assessment of the scientific merit and credibility of a study; however, well-documented biases arise in all methods of peer review. Systemic biases have been shown to directly impact the outcomes of peer review, yet little is known about the downstream impacts of unprofessional reviewer comments that are shared with authors. Methods: In an anonymous survey of international participants in science, technology, engineering, and mathematics (STEM) fields, we investigated the pervasiveness and author perceptions of long-term implications of receiving of unprofessional comments. Specifically, we assessed authors' perceptions of scientific aptitude, productivity, and career trajectory after receiving an unprofessional peer review. Results: We show that survey respondents across four intersecting categories of gender and race/ethnicity received unprofessional peer review comments equally. However, traditionally underrepresented groups in STEM fields were most likely to perceive negative impacts on scientific aptitude, productivity, and career advancement after receiving an unprofessional peer review. Discussion: Studies show that a negative perception of aptitude leads to lowered selfconfidence, short-term disruptions in success and productivity and delays in career advancement. Therefore, our results indicate that unprofessional reviews likely have and will continue to perpetuate the gap in STEM fields for traditionally underrepresented groups in the sciences.
Coral reefs persist in an accretion-erosion balance and ocean acidification resulting from anthropogenic CO2 emissions threatens to shift this balance in favor of net reef erosion. Corals and calcifying algae, largely responsible for reef accretion, are vulnerable to environmental changes associated with ocean acidification, but the direct effects of lower pH on reef erosion has received less attention, particularly in the context of known drivers of bioerosion and natural variability. This study examines the balance between reef accretion and erosion along a well-characterized natural environmental gradient in Kane'ohe Bay, Hawai'i using experimental blocks of coral skeleton. Comparing before and after micro-computed tomography (mu CT) scans to quantify net accretion and erosion, we show that, at the small spatial scale of this study (tens of meters), pH was a better predictor of the accretion-erosion balance than environmental drivers suggested by prior studies, including resource availability, temperature, distance from shore, or depth. In addition, this study highlights the fine-scale variation of pH in coastal systems and the importance of micro habitat variation for reef accretion and erosion processes. We demonstrate significant changes in both the mean and variance of pH on the order of meters, providing a local perspective on global increases in pCO(2). Our findings suggest that increases in reef erosion, combined with expected decreases in calcification, will accelerate the shift of coral reefs to an erosion-dominated system in a high-CO2 world. This shift will make reefs increasingly susceptible to storm damage and sea-level rise, threatening the maintenance of the ecosystem services that coral reefs provide
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.