The inability to repair the damaged membrane may be one of the key mechanisms underlying the severe neuronal degeneration and overall functional loss seen in in vivo spinal cord injury and traumatic axonal injury in blunt head trauma. Promoting membrane resealing following damage may therefore constitute a potential effective therapeutic intervention in treating head trauma and spinal cord injuries. In our previous studies, we have shown that the axolemma failed to reseal following transection in clinically related situations, such as low extracellular calcium and low temperature. Our current studies indicate that DMSO is capable of rendering significant improvement in guinea pig axonal membrane resealing following transection in both 0.5 mM [Ca(2+)](0) and 25 degrees C situations. This was demonstrated physiologically by monitoring membrane potential recovery and anatomically by conducting HRP-exclusion assays 60 minutes after injury. Further, we have shown that the addition of DMSO in normal Krebs' solution (2 mM [Ca(2+)](0) and 37 degrees C) resulted in a decrease in membrane repair following injury. This indicates that DMSO-mediated membrane repair is sensitive to temperature and calcium. This study suggests the role of DMSO in axonal membrane resealing in clinically relevant conditions and raises the possibility of using DMSO in combination with other more established therapies in spinal cord injury treatment.
It is well-known that plasmonic nanoparticles can modify the spectroscopic properties of nearby optical probes, for example, enhanced emission of a fluorescent dye. Yet, the detection and quantification of this effect in bulk solution remain challenging even while size- and shape-controlled nanoparticles have become readily available. We investigated this problem and identified two main difficulties which we were able to overcome through systematic studies. For the detection of fluorescence emanating from optically dense nanoparticle solutions, we describe an analytical model that provides guidelines for experimentalists to maximize the fluorescence intensity by optimizing the concentration, light paths, and excitation-detection volume of the sample. For the quantification of enhancement, which critically hinges upon the comparison to an accurate reference sample, we exploit the tools of DNA nanotechnology to remove the fluorophore from plasmonic coupling on-demand, forming an in situ reference. Using a model system of fluorophore Cy3 and 80 nm gold nanoparticles, we show that these strategies enable the quantitative measurement of plasmonic enhancement across a 20-fold range of optical densities. We anticipate that the presented experimental framework will allow for routine, quantitative measurements for the research and development of plasmon-enhanced phenomena.
Materials for studying biological interactions and for alternative energy applications are continuously under development. Semiconductor quantum dots are a major part of this landscape due to their tunable optoelectronic properties. Size-dependent quantum confinement effects have been utilized to create materials with tunable bandgaps and Auger recombination rates. Other mechanisms of electronic structural control are under investigation as not all of a material’s characteristics are affected by quantum confinement. Demonstrated here is a new structure–property concept that imparts the ability to spatially localize electrons or holes within a core/shell heterostructure by tuning the charge carrier’s kinetic energy on a parabolic potential energy surface. This charge carrier separation results in extended radiative lifetimes and in continuous emission at the single-nanoparticle level. These properties enable new applications for optics, facilitate novel approaches such as time-gated single-particle imaging, and create inroads for the development of other new advanced materials.
Nanotechnology has opened up the opportunity to probe, sense, and manipulate the chemical environment of biological systems with an unprecedented level of spatiotemporal control. A major obstacle to the full realization of these novel technologies is the lack of a general, robust, and simple method for the delivery of arbitrary nanostructures to the cytoplasm of intact live cells. Here, we identify a new delivery modality, based on mechanical disruption of the plasma membrane, which efficiently mediates the delivery of nanoparticles to the cytoplasm of mammalian cells. We use two distinct execution modes, two adherent cell lines, and three sizes of semiconducting nanocrystals, or quantum dots, to demonstrate its applicability and effectiveness. As the underlying mechanism is purely physical, we anticipate that such "mechanodelivery" can be generalized to other modes of execution as well as to the cytoplasmic introduction of a structurally diverse array of functional nanomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.