Abstact.Three gravity field models, parameterized in terms of spherical harmonic coefficients, have been computed from 71 days of GOCE (Gravity field and steady-state Ocean Circulation Explorer) orbit and gradiometer data by applying independent gravity field processing methods. These gravity models are one major output of the European Space Agency (ESA) project GOCE High-Level Processing Facility (HPF). The processing philosophies and architectures of these three complementary methods are presented and discussed, emphasizing the specific features of the three approaches. The resulting GOCE gravity field models, representing the first models containing the novel measurement type of gravity gradiometry ever computed, are analyzed and assessed in detail. Together with the coefficient estimates, full variance-covariance matrices provide error information about the coefficient solutions. A comparison with state-of-the-art GRACE and combined gravity field models reveals the additional contribution of GOCE based on only 71 days of data. Compared to combined gravity field models, large deviations appear in regions where the terrestrial gravity data are known to be of low accuracy. The GOCE performance, assessed against the GRACE-only model ITGGrace2010s, becomes superior at degree 150, and beyond. GOCE provides significant additional information of the global Earth gravity field, with an accuracy of the 2-months GOCE gravity field models of 10 cm in terms of geoid heights, and 3 mGal in terms of gravity anomalies, globally at a resolution of 100 km (degree/order 200).
Gravity field and steady state Ocean Circulation Explorer (GOCE) gravity gradient data of the entire science mission and data from LAGEOS 1/2 and Gravity Recovery and Climate Experiment (GRACE) were combined in the construction of a satellite-only gravity field model to maximum degree 300. When compared to Earth Gravitational Model 2008, it is more accurate at low to medium resolution, thanks to GOCE and GRACE data. When compared to earlier releases of European Space Agency GOCE models, it is more accurate at high degrees owing to the larger amount of data ingested, which was moreover taken at lower altitude. The impact of orbiting at lower altitude in the last year of the mission is large: a model based on data of the last 14 months is significantly more accurate than the release 4 model constructed with the first 28 months. The (calibrated) cumulated geoid error estimate at 100 km resolution is 1.7 cm. The optimal resolution of the GOCE model for oceanographic application is between 100 and 125 km.
Reprocessed Gravity Field and Steady‐State Ocean Circulation Explorer (GOCE) gravity gradient data were combined with data from Laser Geodynamics Satellite (LAGEOS) 1/2 and Gravity Recovery and Climate Experiment (GRACE) to generate a satellite‐only gravity field model to degree 260 using the direct approach, named DIR‐R4. When compared to Earth Gravitational Model 2008 (EGM2008), it is more accurate at low to medium resolution thanks to GOCE and GRACE data. When compared to earlier releases of ESA GOCE models, it is more accurate at high degrees owing to the larger amount of data ingested. It is also slightly more accurate than ESA's fourth release of the time‐wise model (TIM‐R4), as demonstrated by GPS/leveling, orbit determination tests, and an oceanographic evaluation. According to the formal, probably too optimistic by a factor of 2–2.5, cumulated geoid (1.3 cm) and gravity anomaly (0.4 mGal) errors at 100 km resolution, the GOCE mission objectives have been reached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.