We propose in this paper a new mechanism for selecting a most suitable partner in a cooperative wireless communication system, using a type of game called the Bidding game. In this game, in which the conventional theories of economic bidding are applied, the cooperative communication network is modeled as a single-user, multi-relay system in which the source acts as the auctioneer while the relays or partners act as the bidders in the game. The resource being auctioned here is power, and the relay which offers the highest bid in terms of price is selected and allocated power by the source node. Our findings show that there is a linear relationship between the utility achievable by a source node and the selection of a suitable partner for the cooperative process by that node. Our simulation also shows that the proximity of a relay node to the source node has an effect on the selectability of the node prior to the bidding.
The recent migration of most GSM service providers’ networks in Ibadan from 3G to 4G, in preparation for the deployment of 5G technology in the nation necessitated the need to re-examine the GSM networks’ mobility and coverage within the micro cells in-between a Base Station and a Mobile Station. This attempt is aimed at using existing Path Loss Propagation Models in proffering solutions to the negative consequences usually associated with call drops in the Urban and Suburban Areas of Ibadan due to inability of channels to handover as a result of path loss. The path loss (dB) analysis was carried out by measuring the Received Signal Strength RSS (dBm) at distances ranging from 0.05 km to 4 km in-between Base Stations and Mobile Stations using the factory fitted installed RSS software on Android phones. These measurements were taken for three weeks within the urban and suburban areas of the University of Ibadan campus, and its neighborhood community of Agbowo for ten selected existing Base Stations from four of the nationwide GSM Service Providers (SP1, SP2, SP3 and SP4) in Nigeria. The variation of path loss with the RSS for GSM Service Provider (SP1) propagating at 955MHz (reference distance of 0.05km), 1850MHz and 2120MHz, were 66.03 dB, 71.77 dB and 72.96 dB, respectively. However, at 4 km the path loss had risen to 101.59dB for 955MHz, 103.81dB for 1850MHz and 105dB for 2120MHz. Also, the path loss for the GSM service provider (SP2) propagating at 960MHz (reference distance of 0.05km), 1865MHz and 2150MHz were 66.07 dB, 71.84 dB and 73.08 dB, respectively. Moreover, in a similar manner to the SP1 service provider, at 4 km the path loss had risen to 104.14dB for 960MHz, 109.9dB for 1865MHz and 111.14dB for 2150MHz. Furthermore, the path loss for the GSM service provider (SP3) propagating at 950MHz (reference distance of 0.05km), 1835MHz and 2130MHz were 65.98 dB, 71.70 dB and 73.00 dB, respectively. Likewise, as was in the case of the SP1 and SP2 Service providers, the path loss at 4 km had risen to 104.05dB for 950MHz, 109.76dB for 1835MHz and 111.06dB for 2130MHz. Also, the path loss for the GSM service provider (SP4) propagating at 940MHz (reference distance of 0.05km), 1880MHz and 2140MHz, were 65.47 dB, 71.46 dB and 72.23 dB, respectively. Moreover, the path loss at 4 km had risen to 103.53dB for 940MHz, 109.52dB for 1880MHz and 110.29dB for 2140 MHz as was the case with the other GSM Service providers (SP!, SP2 and SP3) considered .Thus, the path loss increases with distance within the microcells of base stations. However, the path loss model with minimum path loss (dB) at a given distance enhances good coverage and handover postponement. Moreover, the mean square error values used in obtaining the accuracy between the measured and the Empirical models were 17.15dB, 59.69dB, 48.46dB, 60.52dB and 40.07dB for the C-model, Cost-OH, Sub-O, Lee-model and experimental model, respectively. . Key words: GSM networks, Base station, Mobile station, Signal strength, GSM service provider
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.