Operator algebra of (not necessarily free) higher-spin conformal conserved currents in generalized matrix spaces, that include 3d Minkowski space-time as a particular case, is shown to be determined by an associative algebra M of functions on the twistor space. For free conserved currents, M is the universal enveloping algebra of the higher-spin algebra. Proposed construction greatly simplifies computation and analysis of correlators of conserved currents. Generating function for n-point functions of 3d (super)currents of all spins, built from N free constituent massless scalars and spinors, is obtained in a concise form of certain determinant. Our results agree with and extend earlier bulk computations in the HS AdS 4 /CF T 3 framework. Generating function for n-point functions of 4d conformal currents is also presented.
A new class of shifted homotopy operators in higher-spin gauge theory is introduced. A sufficient condition for locality of dynamical equations is formulated and Pfaffian Locality Theorem identifying a subclass of shifted homotopies that decrease the degree of non-locality in higher orders of the perturbative expansion is proven.
New homotopy approach to the analysis of nonlinear higher-spin equations is developed. It is shown to directly reproduce the previously obtained local vertices. Simplest cubic (quartic in Lagrangian nomenclature) higher-spin interaction vertices in four dimensional theory are examined from locality perspective by the new approach and shown to be local. The results are obtained in a background independent fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.