The average values of seismic activity obtained from the aftershock sequences of the strongest earthquakes in Asia (M>6.9) are not correlated with the levels of background seismicity in the areas of the strongest events and their magnitudes. A high level of seismic activity is manifested in zones of large active faults and is reflected in aftershock sequences.
Deformation features of the subducting Pacific lithospheric plate are considered according to the data on earthquake focal mechanisms. The territory includes the convergent boundaries between the Pacific Plate and the North American (in the Aleutian arc region), the Okhotsk, the Eurasian and the Philippine plates.It has been shown that the angle of subducting Pacific Plate in the Aleutian subduction zone affects the focal mechanisms of earthquakes that occurred in the upper, 35 km part of the oceanic plate in the zone of its bending. There occur normal-fault earthquakes at a steep-angle subduction and rare thrust earthquakes at a shallow-angle subduction. The azimuthal orientation of P-axes of the focal mechanism solutions in the upper (1–70 km) contact zone corresponds to the Pacific Plate displacement vector when the plate fragments are subducting west-northwestwards. There occurs a change in azimuthal orientation of the compression axes in the subducting plate at a depth of more than 70 km: the axes occupy different azimuthal sectors showing difference in the orientation of their slope, with the orientations of the T-axes become multidirectional.The calculation of seismotectonic deformations was carried out based on the data on focal mechanisms of 7768 earthquakes. It was revealed that the Exx and Ezz deformation fields are the most homogeneous at depths of 1–70 km. The pattern of seismotectonic deformations changes abruptly for deep parts of the subducting plate (105–200, 200–400, and 400–700 km), there are observed heterogeneous deformation fields Exx, Eyy and Еzz with alternating episodes of extension and shortening.There has been proposed the author’s scheme of the influence of the upper mantle convection structure on the geometry of the subducting plate (slab) as a potential catalyst for the processes responsible for the separation of seismic activity zones and the change of earthquake types with depth and in different parts of the extended subduction zone.
The calculation of seismotectonic deformations for different depth levels 1–15, 16–35, 36–70 km was performed according to the data of 1819 mechanisms of earthquake foci that occurred in Central Asia (φ = 25° – 60° N, λ=60° – 115° E) for the period from 1976 to the end of July 2020 with M>4.7. The orientation of the main axes of the strain tensor reconstructed from the mechanisms of earthquake foci with M>4.7 coincide at different depth levels with mainly submeridional and north-eastern shortening and varying elongation from sublatitude to north-western and near-vertical. The consistency of the orientation of the main axes of shortening and elongation reconstructed from seismological materials and from the published results of calculating GPS observations, is traced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.