Flow visualization and correlation measurements revealed the existence of large streamwise vortices in a turbulent wall jet that is attached to a circular cylinder. These coherent structures were not to be found near the nozzle, nor were they artificially triggered, thus the vortices could be a product of centrifugal instability. The existence and scale of this large-scale coherent motion were corroborated by stability analysis applied to the measured mean flow.
Theory and experiments are reported that explore the behaviour of the RayleighTaylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order of 1000g 0 , where g 0 is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duff et al. (Phys. Fluids, vol. 5, 1962, pp. 417-425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh-Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162-178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duff et al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a 1/k 2 decay in growth rates as k → ∞ for large-wavenumber perturbations.
In the present study, shock tube experiments are used to study the very late-time development of the Richtmyer–Meshkov instability from a diffuse, nearly sinusoidal, initial perturbation into a fully turbulent flow. The interface is generated by two opposing gas flows and a perturbation is formed on the interface by transversely oscillating the shock tube to create a standing wave. The puncturing of a diaphragm generates a Mach $1. 2$ shock wave that then impacts a density gradient composed of air and SF6, causing the Richtmyer–Meshkov instability to develop in the 2.0 m long test section. The instability is visualized with planar Mie scattering in which smoke particles in the air are illuminated by a Nd:YLF laser sheet, and images are recorded using four high-speed video cameras operating at 6 kHz that allow the recording of the time history of the instability. In addition, particle image velocimetry (PIV) is implemented using a double-pulsed Nd:YAG laser with images recorded using a single CCD camera. Initial modal content, amplitude, and growth rates are reported from the Mie scattering experiments while vorticity and circulation measurements are made using PIV. Amplitude measurements show good early-time agreement but relatively poor late-time agreement with existing nonlinear models. The model of Goncharov (Phys. Rev. Lett., vol. 88, 2002, 134502) agrees with growth rate measurements at intermediate times but fails at late experimental times. Measured background acceleration present in the experiment suggests that the late-time growth rate may be influenced by Rayleigh–Taylor instability induced by the interfacial acceleration. Numerical simulations conducted using the LLNL codes Ares and Miranda show that this acceleration may be caused by the growth of boundary layers, and must be accounted for to produce good agreement with models and simulations. Adding acceleration to the Richtmyer–Meshkov buoyancy–drag model produces improved agreement. It is found that the growth rate and amplitude trends are also modelled well by the Likhachev–Jacobs vortex model (Likhachev & Jacobs, Phys. Fluids, vol. 17, 2005, 031704). Circulation measurements also show good agreement with the circulation value extracted by fitting the vortex model to the experimental data.
The vortex model developed by Jacobs and Sheeley [“Experimental study of incompressible Richtmyer–Meshkov instability,” Phys. Fluids 8, 405 (1996)] is essentially a solution to the governing equations for the case of a uniform density fluid. Thus, this model strictly speaking only applies to the case of vanishing small Atwood number. A modification to this model for small to finite Atwood number is proposed in which the vortex row utilized is perturbed such that the vortex spacing is smaller across the spikes and larger across the bubbles, a fact readily observed in experimental images. It is shown that this modification more effectively captures the behavior of experimental amplitude measurements, especially when compared with separate bubble and spike data. In addition, it is shown that this modification will cause the amplitude to deviate from the logarithmic result given by the heuristic models at late time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.