New functional elastic polyurethane foams (PUF) degradable under environmental abiotic and biotic factors, retaining all the inherent properties of the conventional foams were synthesized using isocyanate precursors based on disaccharides (DS): lactose, maltose and saccharose. It was shown by the model reactions of monosaccharide glucose, and DS lactose and saccharose, with phenylisocyanate that both the primary and secondary hydroxyls of the carbohydrates reacted to form urethanes. The main properties of DS-based foams (PUF/DS) were found to be similar to PUF foam (matrix) prepared with conventional polyols. However, the new PUF/DS were found to undergo enhanced acid/alkaline hydrolysis and degradation compared with PUF matrix when incubated in soil. Mass losses of incubated PUF/DSs significantly exceeded the actual carbohydrate content 28.6%, and in 12 months reached 39.58 (PUF-4), 53.31(PUF-8), and 47.25 (PUF-12). In contrast, under the same conditions PUF matrix lost only 2-2.5%, confirming that incorporation of natural compounds into the polymer chain impacted the degradation processes. PUF/DS were characterized by FTIR, 1 H NMR, ebullioscopy, and exclusion chromatography (molecular masses and molecular mass distribution of the oligomeric model), physical and mechanical tests (density, tensile strength, relative elongation, moisture absorption, vapor permeability), morphology, and degradation in the soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.