A single-mode polymer optical fiber (POF) in a Mach–Zehnder interferometer configuration is validated for the measurement of tensile nominal elongation of the POF up to 10%. The single-mode POF sensors were unmounted and surface mounted on aluminum tensile coupons for strain measurements. The measured strains from the POF sensors were compared to extensometer measurements for validation. The phase response of the interferometer was measured with a 3 × 3 coupler interrogator. The coupler arrangement was configured to permit the extraction of potential intensity changes in the sensor arm. The phase-shift–strain response of the POF sensors was repeatable for the loading and unloading measurements. The nonlinearity of the phase-shift–strain response was greater than that measured during pure tensile loading of the POF, presumably due to the behavior of the adhesive between the optical fiber and the aluminum coupons.
This paper presents intrinsic polymer fiber (POF) sensors for high-strain applications such as the performance-based assessment and health monitoring of civil infrastructure systems subjected to earthquake loading or morphing aircraft. POFs provide a potential maximum strain range of 6-12%, are more flexible that silica optical fibers, and are more durable in harsh chemical or environmental conditions. Recent advances in the fabrication of singlemode POFs have made it possible to extend POFs to interferometric sensor capabilities. Furthermore, the interferometric nature of intrinsic sensors permits high accuracy for such measurements. Measurements of the mechanical response of the sensor at various strain rates are presented. In addition, the design of a time-of-flight interferometer for phase measurements over the large strain range required is discussed. Finally the bond strength between the embedded POF and various structural materials is investigated and a methodology demonstrated for embedment of the sensors into a reinforced concrete structural component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.