Computational investigations of the complex flow and deformation processes of natural slopes within a continuum‐mechanical approach become more and more important due to an increasing number of slope movements and slope failure situations caused by heavy rainfall events. Numerical simulations of hillslopes can support the detection of various coupled failure mechanisms by simply changing the initial and boundary conditions of the considered initial‐boundary‐value problem. This procedure can contribute to a deeper and better understanding of various complex slope failure processes. In this study, the slope system, generally understood as an unsaturated soil, was considered as a triphasic material consisting of a soil skeleton, such as sand, a pore liquid, such as water, and a pore gas, such as air. The model was embedded in the well‐founded theory of porous media, while numerical solutions were realized by use of the finite‐element solver PANDAS. Proceeding from cohesionless sand as the basic soil under study, the material parameters governing the soil behavior were taken from triaxial experiments on dry sand specimens performed under homogeneous loading conditions, whereas the parameters governing the hydraulic behavior were determined by experiments on saturated soil specimens under nondeforming conditions. Furthermore, numerical investigations of slope failure scenarios under different loading conditions were compared with each other to find out how the pore water influences the failure behavior. The computations reveal a strong coupling between the soil deformation and the hydraulic behavior during failure processes. Finally, the flow and deformation behavior of the natural Heumoes slope in Ebnit situated near Dornbirn in the eastern part of the Voralberg Alps (Austria) was studied qualitatively. Unfortunately, this slope is still in motion.
The lack of an efficient modelling-simulation-analysis workflow for creating and utilising detailed subject-specific computational models is one of the key reasons why simulation-based approaches for analysing socket-stump interaction have not yet been successfully established. Herein, we propose a novel and efficient modelling-simulation-analysis workflow that uses commercial software for generating a detailed subject-specific, three-dimensional finite element model of an entire residual limb from Diffusion Tensor MRI images in <20 min. Moreover, to complete the modelling-simulation-analysis workflow, the generated subject-specific residual limb model is used within an implicit dynamic FE simulation of bipedal stance to predict the potential sites of deep tissue injury. For this purpose, a nonlinear hyperelastic, transversely isotropic skeletal muscle constitutive law containing a deep tissue injury model was implemented in LS-DYNA. To demonstrate the feasibility of the entire modelling-simulation-analysis workflow and the fact that detailed, anatomically realistic, multi-muscle models are superior to state-of-the-art, fused-muscle models, an implicit dynamic FE analysis of 2-h bipedal stance is carried out. By analysing the potential volume of damaged muscle tissue after donning an optimally-fitted and a misfitted socket, i.e., a socket whose volume was isotropically shrunk by 10%, we were able to highlight the differences between the detailed individual- and fused-muscle models. The results of the bipedal stance simulation showed that peak stresses in the fused-muscle model were four times lower when compared to the multi-muscle model. The peak interface stress in the individual-muscle model, at the end of bipedal stance analysis, was 2.63 times lower than that in the deep tissues of the stump. At the end of the bipedal stance analysis using the misfitted socket, the fused-muscle model predicted that 7.65% of the residual limb volume was injured, while the detailed-model predicted 16.03%. The proposed approach is not only limited to modelling residual limbs but also has applications in predicting the impact of plastic surgery, for detailed forward-dynamics simulations of normal musculoskeletal systems.
SUMMARYDuring several triaxial compression experiments on plastic hardening, softening, and failure properties of dense sand specimens, it was found on various stress paths that the size of the failure surface was not constant. Instead, it changed depending on the current state of hydrostatic pressure. This finding is in contrast to the standard opinion consisting of the fact that the failure surface remains constant, once it has been reached during an experiment or in situ.In general, the behaviour of cohesionless granular-material-like sand is somehow characterised in between fluid and solid, where the solid behaviour results from the angle of internal friction and the confining pressure. Although the friction angle is an intrinsic material property, the confining pressure varies with the boundary conditions, thus defining different solid properties like plastic hardening, softening, and also failure.Based on our findings, it was the goal of the present contribution to introduce an improved setting for the plastic strain hardening and softening behaviour including the newly found yield properties at the limit state. For the identification of the material parameters, a complete triaxial experimental analysis of the tested sand is given. The overall elasto-plasticity concept is validated by numerical computations of several laboratory foundation-and slope-failure experiments. The performance of the proposed approach is compared with the standard concept of a constant failure surface, where the corresponding yield surfaces are understood as contours of equivalent plastic work or plastic strain.
The prediction of landsliding requires an exact knowledge of the mechanical behaviour of granular materials. This kind of materials, e. g., sand, have a very complex deformation behaviour, which depend on the stress state and on the loading history. In this work, the deformation behaviour of the solid skeleton is characterised via homogeneous triaxial tests on dry sand specimens. Additionally, an appropriate elasto-plastic material law to describe the solid skeleton in the frame of Theory of Porous Media (TPM) is used, which is implemented in the FE tool PANDAS. Furthermore, a single-surface yield criterion with isotropic hardening, which limits the elastic domain, and a non-associated plastic flow are employed. The determination of the material parameters of the linear elasticity law as well as the single-surface yield criterion are based on test data of triaxial experiments. The material parameters are identified using a derivative-based optimisation method (donlp2), which is coupled with PANDAS. Finally, a simulation of a benchmark test is presented to show shear band localisation effects, where the material behaviour is described by a triphasic porous media model based on the TPM, where the constituents are a deformable solid skeleton and two pore fluids, water and air. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.