BACKGROUND AND PURPOSE:Patients with aqueductal stenosis (AS) present with various clinical and radiologic features. Conventional MR imaging provides useful information in AS but depends on a subjective evaluation by the neuroradiologist. The purpose of this study was to evaluate the support of the phase-contrast MR imaging (PC-MR imaging) technique (sensitive to CSF flows) for the diagnosis of AS.
The Monro-Kellie doctrine describes the principle of homeostatic intracerebral volume regulation, which stipulates that the total volume of the parenchyma, cerebrospinal fluid, and blood remains constant. Hypothetically, a slow shift (e.g., brain edema development) in the irregular vasomotion-driven exchanges of these compartmental volumes may lead to increased intracranial hypertension. To evaluate this paradigm in a clinical setting and measure the processes involved in the regulation of systemic intracranial volume, we quantified cerebral blood flow velocity (CBFv) in the middle cerebral artery, arterial blood pressure (ABP), and intracranial pressure (ICP), in 238 braininjured subjects. Relative changes in compartmental compliances C a (arterial) and C i (combined venous and CSF compartments) were mathematically estimated using these raw signals through time series analysis; C a and C i were used to compute an index of cerebral compliance (ICC) as a moving correlation coefficient between C a and C i . Conceptually, a negative ICC would represent a functional Monro-Kellie doctrine by illustrating volumetric compensations between C a and C i . Clinical observations show that Lundberg A-waves and arterial hypertension were associated with negative ICC, whereas in refractory intracranial hypertension, a positive ICC was observed. In subjects who died, ICC was significantly greater than in survivors (0.46 -0.027 versus 0.22 -0.017; p < 0.01) over the first 5 days of intensive care. The mortality rate is 5% when ICC is less than 0, and 43% when above 0.7. ICC above 0.7 was associated with terminally elevated ICP (chi-square p = 0.026). We propose that the Monro-Kellie doctrine can be monitored in real time to illustrate the state of intracranial volume regulation.
Our knowledge of cerebrospinal fluid (CSF) hydrodynamics has been considerably improved with the recent introduction of phase-contrast magnetic resonance imaging (phase-contrast MRI), which can provide CSF and blood flow measurements throughout the cardiac cycle. Key temporal and amplitude parameters can be calculated at different sites to elucidate the role played by the various CSF compartments during vascular brain expansion. Most of the models reported in the literature do not take into account CSF oscillation during the cardiac cycle and its kinetic energy impact on the brain. We propose a new lumped-parameter compartmental model of CSF and blood flows in healthy subjects during the cardiac cycle. The system was divided into five submodels representing arterial blood, venous blood, ventricular CSF, cranial subarachnoid space, and spinal subarachnoid space. These submodels are connected by resistances and compliances. The model developed was used to reproduce certain functional characteristics observed in seven healthy volunteers, such as the distribution (amplitude and phase shift) of arterial, venous, and CSF flows. The results show a good agreement between measured and simulated intracranial CSF and blood flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.