Objective: It is commonly agreed that active safety will have a significant impact on reducing accident figures for pedestrians and probably also bicyclists. However, chances and limitations for active safety systems have only been derived based on accident data and the current state of the art, based on proprietary simulation models. The objective of this article is to investigate these chances and limitations by developing an open simulation model.Methods: This article introduces a simulation model, incorporating accident kinematics, driving dynamics, driver reaction times, pedestrian dynamics, performance parameters of different autonomous emergency braking (AEB) generations, as well as legal and logical limitations. The level of detail for available pedestrian accident data is limited. Relevant variables, especially timing of the pedestrian appearance and the pedestrian's moving speed, are estimated using assumptions. The model in this article uses the fact that a pedestrian and a vehicle in an accident must have been in the same spot at the same time and defines the impact position as a relevant accident parameter, which is usually available from accident data. The calculations done within the model identify the possible timing available for braking by an AEB system as well as the possible speed reduction for different accident scenarios as well as for different system configurations.Results: The simulation model identifies the lateral impact position of the pedestrian as a significant parameter for system performance, and the system layout is designed to brake when the accident becomes unavoidable by the vehicle driver. Scenarios with a pedestrian running from behind an obstruction are the most demanding scenarios and will very likely never be avoidable for all vehicle speeds due to physical limits. Scenarios with an unobstructed person walking will very likely be treatable for a wide speed range for next generation AEB systems.
Introduction: Telemedicine was pioneered in the Defence Medical Services (DMS) in 1998, since then the capabilities within the DMS have not advanced in step with advances in technology. We present our findings of a pilot of remote video consultation via Skype for MODNET during an arduous course held in the UK. Method: Combat medical technician sick parades were live streamed via Skype to a Defence Primary Healthcare Medical Centre and medical officer (MO) support was delivered remotely. This process was augmented by the use of Pando for still images of wounds and infection sites in order to enhance decision making and situational awareness. Results: Over a 3-week period, 34 consultations carried out during sick parade required the input from a remote MO, of those 34% required a prescription from an MO. None of the presentations required a face-to-face consultation, and all patients received MO-led care remotely. Conclusion: We have successfully demonstrated that video telemedicine consultations are safe, while simultaneously improving patient care, augmenting the distribution of medical assets and reducing costs.
Integrated vehicle safety systems that combine elements from primary and secondary safety have a high potential to improve vehicle safety, due to their ability to influence crash conditions and/or to adapt to these crash conditions. So far no standard evaluation procedures have been developed and implemented. The main goal of the ASSESS project is to develop harmonized and standardized assessment procedures for related collision mitigation and avoidance systems. Procedures are developed for:• Driver behavior evaluation • Pre-crash system performance evaluation • Crash performance evaluation • Socio-economic assessment This paper presents the activities related to the "Pre-Crash evaluation". The objective is to provide a tool box for the specific evaluation of the pre-crash performance of collision mitigation and avoidance systems and their contribution to the overall system performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.