Pull-in parameters are important properties of electrostatic actuators. Efficient and accurate analysis tools that can capture these parameters for different design geometries, are therefore essential. Current simulation tools approach the Pull-In state by iteratively adjusting the voltage applied across the actuator electrodes. The convergence rate of this scheme gradually deteriorates as the Pull-In state is approached. Moreover, the convergence is inconsistent and requires many mesh and accuracy refinements to assure reliable predictions. As a result, the design procedure of electrostatically actuated MEMS devices can be time-consuming. In this paper a novel displacement iteration Pull-In extraction (DIPIE) scheme is presented. The DIPIE scheme is shown to converge consistently and far more rapidly than the voltage iterations (VI) scheme ( 100 times faster!). The DIPIE scheme requires separate mechanical and electrostatic field solvers. Therefore, it can be easily implemented in existing MOEMS CAD packages. Moreover, using the DIPIE scheme, the Pull-In parameters extraction can be performed in a fully automated mode, and no user input for search bounds is required.[782]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.