To satisfy the electrical and thermomechanical requirements for a continuous wave millimeter wave beam transmission, a window assembly using a large size synthesized diamond disk has been developed. Such window systems are needed as a vacuum barrier and tritium shielding in future electron cyclotron heating systems for fusion plasma heating and noninductive electron cyclotron current drive. The diamond used in this study was manufactured by chemical vapor deposition (CVD) and consists of a polycrystalline diamond disk 96 mm in diameter and 2.23 mm thick. The disk was built into an assembly in which two Inconel tubes were bonded on both sides of the plate to provide vacuum shielding and water cooling to the edge of the disk, leaving an effective window aperture of 83 mm. It will be shown that, as a result of the high thermal conductivity and low dielectric loss exhibited by this grade of CVD diamond, the temperature increase of the window due to the absorption of high-power millimeter wave radiation could be minimized by simple water edge cooling at room temperature. During transmission of a focused Gaussian beam of 170 GHz, 110 kW, 10 s, the temperature increase at the center of the window reached a steady state condition at a value of approximately 40 K, in good agreement with calculated values. Water-edge-cooled CVD diamond windows promise to provide a practical technical solution for the transmission of continuous millimeter wave transmission in excess of 1 MW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.