Abstract.The geomagnetic observatory of Juriquilla Mexico, located at longitude -100.45 • and latitude 20.70 • , and 1946 m a.s.l., has been operational since June 2004 compiling geomagnetic field measurements with a three component fluxgate magnetometer. In this paper, the results of the analysis of these measurements in relation to important seismic activity in the period of 2007 to 2009 are presented. For this purpose, we used superposed epochs of Discrete Wavelet Transform of filtered signals for the three components of the geomagnetic field during relative seismic calm, and it was compared with seismic events of magnitudes greater than M s > 5.5, which have occurred in Mexico. The analysed epochs consisted of 18 h of observations for a dataset corresponding to 18 different earthquakes (EQs). The time series were processed for a period of 9 h prior to and 9 h after each seismic event. This data processing was compared with the same number of observations during a seismic calm. The proposed methodology proved to be an efficient tool to detect signals associated with seismic activity, especially when the seismic events occur in a distance (D) from the observatory to the EQ, such that the ratio D/ρ < 1.8 where ρ is the earthquake radius preparation zone. The methodology presented herein shows important anomalies in the Ultra Low Frequency Range (ULF; 0.005-1 Hz), primarily for 0.25 to 0.5 Hz. Furthermore, the time variance (σ 2 ) increases prior to, during and after the seismic event in relation to the coefficient D1 obtained, principally in the Bx (N-S) and By (E-W) geomagnetic components. Therefore, this paper proposes and develops a new methodology to extract the abnormal signals of the geomagnetic anomalies related to different stages of the EQs.
Abstract.A method for detecting seismomagnetic signals is presented. This work presents evidence of geomagnetic perturbations associated with three earthquakes (EQs) that occurred in Mexico within a distance of ρ = (1.8) 10 0.45M , where M is the magnitude of the EQ, during the year 2010. An improved statistical analysis in relation with the polarization analysis (as the ratio of vertical magnetic field component to the horizontal one) has been developed. The variation index (S 4 ) shows important differences one day before and one day after the EQs (magnitudes considered are from 6 to 7.2).
Abstract. The Mexican volcanic belt (MVB) is a seismogenic zone that transects the central part of Mexico with an east-west orientation. The seismic risk and hazard of this seismogenic zone has not been studied in detail due to the scarcity of instrumental data as well as because seismicity in the continental regime of central Mexico is not too frequent. However, it is known that there are precedents of large earthquakes (M w > 6.0) that have taken place in this zone. The valley of Mexico City (VM) is the sole zone, within the MVB, that has been studied in detail. Studies have mainly focused on the ground amplification during large events such as the 1985 subduction earthquake that occurred off coast of Michoacán. The purpose of this article is to analyze the behavior of site effects in the MVB zone based on records of shallow earthquakes (data not reported before) that occurred in the zone between 1998 and 2011. We present a general overview of site effects in the MVB, a classification of the stations in order to reduce the uncertainty in the data when obtaining attenuation parameters in future works, as well as some comparisons between the information presented here and that presented in previous studies.A regional evaluation of site effects and Fourier acceleration spectrum (FAS) shape was estimated based on 80 records of 22 shallow earthquakes within the MVB zone. Data of 25 stations were analyzed. Site effects were estimated by using the horizontal-to-vertical spectral ratio (HVSR) methodology. The results show that seismic waves are less amplified in the northeast sites of the MVB with respect to the rest of the zone and that it is possible to classify two groups of stations: (1) stations with negligible site amplification (NSA) and (2) stations with significant site amplification (SSA). Most of the sites in the first group showed small (< 3) amplifications while the second group showed amplifications ranging from 4 to 6.5 at frequencies of about 0.35, 0.75, 15 and 23 Hz. With these groups of stations, average levels of amplification were contrasted for the first time with those caused by the subduction zone earthquakes. With respect to the FAS shapes, most of them showed similarities at similar epicentral distances. Finally, some variations of site effects were found when compared to those obtained in previous studies on different seismicity regions. These variations were attributed to the location of the source.These aspects help to advance the understanding about the amplification behavior and of the expected seismic risk on central Mexico due to large earthquakes within the MVB seismogenic zone.
Abstract. The town of Peñamiller in the state of Querétaro, Mexico, is located at the northeast border of the seismogenic zone known as the Mexican Volcanic Belt (MVB), which transects the central part of Mexico with an east–west orientation. In the vicinity of this town, a sequence of small earthquakes occurred during the end of 2010 and beginning of 2011. Seismicity in the continental regimen of central Mexico is not too frequent; however, it is known that there are precedents of large earthquakes (Mw magnitude greater than 6.0) occurring in this zone. Three large earthquakes have occurred in the past 100 yr: the 19 November 1912 (MS = 7.0), the 3 January 1920 (MS = 6.4), and the 29 June 1935 (MS = 6.9) earthquakes. Prior to the instrumental period, the earthquake of 11 February 1875, which took place near the city of Guadalajara, caused widespread damage. The purpose of this article is to contribute to the available seismic information of this region. This will help advance our understanding of the tectonic situation of the central Mexico MVB region. Twenty-four shallow earthquakes of the Peñamiller seismic sequence of 2011 were recorded by a temporary accelerograph network installed by the Universidad Autónoma de Querétaro (UAQ). The data were analyzed in order to determine the source locations and to estimate the source parameters. The study was carried out through an inversion process and by spectral analysis. The results show that the largest earthquake occurred on 8 February 2011 at 19:53:48.6 UTC, had a moment magnitude Mw = 3.5, and was located at latitude 21.039° and longitude −99.752°, at a depth of 5.6 km. This location is less than 7 km away in a south-east direction from downtown Peñamiller. The focal mechanisms are mostly normal faults with small lateral components. These focal mechanisms are consistent with the extensional regimen of the southern extension of the Basin and Range (BR) province. The source area of the largest event was estimated to have a radius of 0.5 km, which corresponds to a normal fault with azimuth of 174° and an almost pure dip slip. Peak ground acceleration (PGA) was close to 100 cm s−2 in the horizontal direction. Shallow earthquakes induced by crustal faulting present a potential seismic risk and hazard within the MVB, considering the population growth. Thus, the necessity to enrich seismic information in this zone is very important since the risk at most urban sites in the region might even be greater than that posed by subduction earthquakes.
(2016) Novel ST-MUSIC-based spectral analysis for detection of ULF geomagnetic signals anomalies associated with seismic events in Mexico, Geomatics, Natural Hazards and Risk, 7:3, 1162-1174, DOI: 10.1080/19475705.2015 Recently, the analysis of ultra-low-frequency (ULF) geomagnetic signals in order to detect seismic anomalies has been reported in several works. Yet, they, although having promising results, present problems for their detection since these anomalies are generally too much weak and embedded in high noise levels. In this work, a short-time multiple signal classification (ST-MUSIC), which is a technique with high-frequency resolution and noise immunity, is proposed for the detection of seismic anomalies in the ULF geomagnetic signals. Besides, the energy (E) of geomagnetic signals processed by ST-MUSIC is also presented as a complementary parameter to measure the fluctuations between seismic activity and seismic calm period. The usefulness and effectiveness of the proposal are demonstrated through the analysis of a synthetic signal and five real signals with earthquakes. The analysed ULF geomagnetic signals have been obtained using a tri-axial fluxgate magnetometer at the Juriquilla station, which is localized in Queretaro, Mexico (geographic coordinates: longitude 100.45 E and latitude 20.70 N). The results obtained show the detection of seismic perturbations before, during, and after the main shock, making the proposal a suitable tool for detecting seismic precursors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.