CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute (IRSN) and operated by CEA at the Cadarache research center. It is designed to study fuel behavior under RIA (Reactivity Initiated Accident) conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber ( 3 He) situated in the so-called "transient rods" inside the reactor core. The CABRI reactivity injection system allows us to generate structured transients based on specific sequences of depressurization. For such transients, the time difference between the openings of two valves of the reactivity injection system has an important impact on the power pulse shape. A kinetic point code, SPARTE, was developed in order to replace the older DULCINEE code dedicated to the modeling and prediction of CABRI power transients. The SPARTE code includes new models of 3 He depressurization based on CFD calculations, variable Doppler coefficient based on Monte Carlo calculations and variable axial neutron flux profile. The density and Doppler models have a large impact on power transient prediction. For low initial pressure transients, the major uncertainty comes from the reactivity injected by the 3 He depressurization. For high initial pressure transients, the 3 He heating during the power pulse ("TOP effect") is responsible of an additional injection of reactivity that needs to be modeled precisely.
Abstract-CABRI is an experimental pulse reactor, funded by the French Nuclear Safety and Radioprotection Institute (IRSN) and operated by CEA at the Cadarache research center. It is designed to study fuel behavior under RIA conditions. In order to produce the power transients, reactivity is injected by depressurization of a neutron absorber ( 3 He) situated in transient rods inside the reactor core. The shapes of power transients depend on the total amount of reactivity injected and on the injection speed. The injected reactivity can be calculated by conversion of the 3 He gas density into units of reactivity. So, it is of upmost importance to properly master gas density evolution in transient rods during a power transient. The 3 He depressurization was studied by CFD calculations and completed with measurements using pressure transducers. The CFD calculations show that the density evolution is slower than the pressure drop. Surrogate models were built based on CFD calculations and validated against preliminary tests in the CABRI transient system. Studies also show that it is harder to predict the depressurization during the power transients because of neutron/ 3 He capture reactions that induce a gas heating. This phenomenon can be studied by a multiphysics approach based on reaction rate calculation thanks to Monte Carlo code and study the resulting heating effect with the validated CFD simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.