The problem of the article is designed to reveal the proposed, developed and researched new method of improving the adhesion strength of plasma wear-resistant coatings on the outer surfaces of weapons made of high-alloy, heat-resistant steels, using additional cyclic (3-4) times their heating by laser radiation to temperatures of 0.6 – 0.8Tpl for a few milliseconds. The purpose of increasing the resource of use and the quality of the appearance of the weapon by applying wear-resistant coatings with increased adhesion strength to the base using plasma gas-thermal spraying followed by laser thermal cycling. Determination of the main factors and parameters of the process of laser thermocycling of plasma coatings, their interrelationships, development of an algorithm for determining the conditions of laser thermocycling, establishment of the rational range of their values by mathematical modeling and experimental research. The results of mathematical modeling of laser cyclic heating of plasma coatings of HTN of different thicknesses are presented, which allows determining the irradiation parameters that ensure their heating to temperatures at the "coating-substrate" boundary ≤1000ºС, on the surface - to Т< Тpl, at maximum cooling rates. It has been proven that laser thermocycling provides an increase in the adhesion strength of coatings to the base from 14–18 to 90–110 MPa, a decrease in porosity from 10–12% to 7–8%, which is due to the redistribution of alloying components at the “coating–base” interface, with the formation of elements of the metallurgical connection, contributes to a significant increase in wear resistance and a decrease in the coefficient of friction due to the formation of secondary ultradispersed film structures. We consider laser thermocycling of plasma coatings is an effective method of improving their quality and strength of adhesion to the base.
Solid state disk lasers have a number of advantages over lasers with a rod active element. In particular, due to efficient heat dissipation, there is no thermal deformation of the active element and its transformation from the optical point of view into a lens. That in turn improves the stability of the generated laser beam and reduces the risk to lose of resonator stability. In addition, disk lasers are able to generate high power at a compact size. However, to ensure the direction of the pump radiation on the active element, disk lasers require a complex mirror system of reflection of the pump beams, and therefore have design limitations on the introduction of pump energy into the active element. This article is dedicated to the development of the design of pumping system, which will increase the intensity of pumping the active element of the disk laser, which will increase the generated power. The article presents the original design of a disk laser with an ellipsoidal illuminator and a tiered system for pumping the active element by diode laser radiation. The results of modeling the heat dissipation from the active element to the refrigerator are presented. The estimation of the efficiency of excitation of the active element when using an ellipsoidal illuminator and the procedure for calculating the parameters of the generated laser beam are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.