In this study, the performance of three global solar radiation models and the accuracy of global solar radiation data derived from three sources were compared. Twenty-two years of surface meteorological data consisting of monthly mean daily sunshine duration, minimum and maximum temperatures, and global solar radiation collected from the Nigerian Meteorological (NIMET) Agency, Oshodi, Lagos, and the National Aeronautics Space Agency (NASA) for three locations in North-Western region of Nigeria were used. A new model incorporating Garcia model into Angstrom-Prescott model was proposed for estimating global radiation in Nigeria. The performances of the models used were determined by using mean bias error (MBE), mean percentage error (MPE), root mean square error (RMSE), and coefficient of determination ( 2 ). Based on the statistical error indices, the proposed model was found to have the best accuracy with the least RMSE values (0.376 for Sokoto, 0.463 for Kaduna, and 0.449 for Kano) and highest coefficient of determination, 2 values of 0.922, 0.938, and 0.961 for Sokoto, Kano, and Kaduna, respectively. Also, the comparative study result indicates that the estimated global radiation from the proposed model has a better error range and fits the ground measured data better than the satellite-derived data.
Abstract-Propagation path loss models are useful for the prediction of received signal strength at a given distance from the transmitter; estimation of radio coverage areas of Base Transceiver Stations (BTS); frequency assignments; interference analysis; handover optimisation; and power level adjustments. Due to the differences in: environmental structures; local terrain profiles; and weather conditions, path loss prediction model for a given environment using any of the existing basic empirical models such as the Okumura-Hata's model has been shown to differ from the optimal empirical model appropriate for such an environment. In this paper, propagation parameters, such as distance between transmitting and receiving antennas, transmitting power and terrain elevation, using sea level as reference point, were used as inputs to Artificial Neural Network (ANN) for the development of an ANN based path loss model. Data were acquired in a drive test through selected rural and suburban routes in Minna and environs as dataset required for training ANN model. Multilayer perceptron (MLP) network parameters were varied during the performance evaluation process, and the weight and bias values of the best performed MLP network were extracted for the development of the ANN based path loss models for two different routes, namely rural and suburban routes. The performance of the developed ANN based path loss model was compared with some of the existing techniques and modified techniques. Using Root Mean Square Error (RMSE) obtained between the measured and the model outputs as a measure of performance, the newly developed ANN based path loss model performed better than the basic empirical path loss models considered such as: Hata; Egli; COST-231; Ericsson models and modified path loss approach.
This paper presents development of artificial neural network (ANN) models to compute received signal strength (RSS) for four VHF (very high frequency) broadcast stations using measured atmospheric parameters. The network was trained using Levenberg-Marquardt back-propagation (LMBP) algorithm. Evaluation of different effects of activation functions at the hidden and output layers, variation of number of neurons in the hidden layer and the use of different types of data normalisation were systematically applied in the training process. The mean and variance of calculated MSE (mean square error) for ten different iterations were compared for each network. From the results, the ANN model performed reasonably well as computed signal strength values had a good fit with the measured values. The computed MSE were very low with values ranging between 0.0027 and 0.0043. The accuracy of the trained model was tested on different datasets and it yielded good results with MSE of 0.0069 for one dataset and 0.0040 for another dataset. The measured field strength was also compared with ANN and ITU-R P. 526 diffraction models and a strong correlation was found to exist between the measured field strength and ANN computed signals, but no correlation existed between the measured field strength and the predicted field strength from diffraction model. ANN has thus proved to be a useful tool in computing signal strength based on atmospheric parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.