The negative ion electrospray mass spectra of six bromo- and chloroacetic acids were measured using two different electrospray interfaces and single quadrupole and bench-top time-of-flight mass spectrometers. With each acid at 50 microg/mL in aqueous methanol at pH 10, the anions observed included deprotonated molecules, adducts, and fragment ions. With each acid at 100 ng/mL in aqueous acetonitrile at pH 10, mainly deprotonated molecules are observed. The exact m/z measuring capability of the time-of-flight mass spectrometer was evaluated to assess the potential for the determination of the individual acids in mixtures without an on-line separation. Mean measurement errors were nearly always less than +/- 9 ppm and the majority were less than +/- 5 ppm. Potential interferences by substances having similar exact masses and the ability to form anions in aqueous solutions were evaluated. The estimated detection limits of the five regulated haloacetic acids in drinking water, without a sample preconcentration step, are in the range of 24-86 ng/mL, which is within about a factor of 10 of the levels required for routine monitoring of the acids. Actual drinking water samples were not analyzed pending the development of slightly more sensitive techniques and quantitative analytical procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.