The discovery of endogenous pararetroviral sequences (EPRVs) has had a deep impact on the approaches needed for diagnosis, taxonomy, safe movement of germplasm and management of diseases caused by pararetroviruses. In this article, we illustrate this through the example of yam (Dioscorea spp.) badnaviruses. To enable progress, it is first necessary to clarify the taxonomical status of yam badnavirus sequences. Phylogeny and pairwise sequence comparison of 121 yam partial reverse transcriptase sequences provided strong support for the identification of 12 yam badnavirus species, of which ten have not been previously named. Virus prevalence data were obtained, and they support the presence of EPRVs in D. rotundata, but not in D. praehensilis, D. abyssinica, D. alata or D. trifida. Five yam badnavirus species characterised by a wide host range seem to be of African origin. Seven other yam badnavirus species with a limited host range are probably of Asian-Pacific origin. Recombination under natural circumstances appears to be rare. Average values of nucleotide intra-species genetic distances are comparable to data obtained for other RNA and DNA virus families. The dispersion scenarios proposed here, combined with the fact that host-switching events appear common for some yam badnaviruses, suggest that the risks linked to introduction via international plant material exchanges are high.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.