To understand the effect of the doping amount of Cu 2+ on the structure and reactivity of SnO2 in NOx-SCR with NH3, a series of Sn-Cu-O binary oxide catalysts with different Sn/Cu ratios have been prepared and thoroughly characterized. Using the XRD extrapolation method, the SnO2 lattice capacity for Cu 2+ cations is determined at 0.10 g CuO per g of SnO2, equaling a Sn/Cu molar ratio of 84/16. Therefore, in a tetragonal rutile SnO2 lattice, only a maximum of 16% of the Sn 4+ cations can be replaced by Cu 2+ to form a stable solid solution structure. If the Cu content is higher, CuO will form on the catalyst surface, which has a negative effect on the reaction performance. For samples in a pure solid solution phase, the number of surface defects increase with increasing Cu content until it reaches the lattice capacity, as confirmed by Raman spectroscopy. As a result, the amounts of both active oxygen species and acidic sites on the surface, which critically determine the reaction performance, also increase and reach the maximum level for the catalyst with a Cu content close to the lattice capacity. A distinct lattice capacity threshold effect on the structure and reactivity of Sn-Cu binary oxide catalysts has been observed. A Sn-Cu catalyst with the best reaction performance can be obtained by doping the SnO2 matrix with the lattice capacity amount of Cu 2+ .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.