Water vapor plays the key role in the global hydrologic cycle and climate change. However, the distribution and variability of water vapor in the troposphere is not understood well in the globe, particularly the high-resolution variation. In this paper, 13-year 2-h precipitable water vapors (PWV) are derived from globally distributed 155 Global Positioning System sites observations and global three-hourly surface weather data and six-hourly National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis products, which are the first used to investigate multiscale water-vapor variability on a global scale. It has been found that the distinct seasonal cycles are in summer with a maximum water vapor and in winter with a minimum water vapor. The higher amplitudes of annual PWV variations are located in midlatitudes with about 10-20 ± 0.5 mm, and the lower amplitudes are found in high latitudes and equatorial areas with about 5 ± 0.5 mm. The larger differences of mean PWV between in summer and winter are located in midlatitudes with about 10-30 mm, particularly in the Northern Hemisphere. The semiannual variation amplitudes are relatively weaker with about 0.5 ± 0.2 mm. In addition, significant diurnal variations of PWV are found over most International Global Navigation Satellite Systems Service stations. The diurnal (24 h) cycle has amplitude of 0.2-1.2 ± 0.1 mm, and the peak time is from the noon to midnight. The semidiurnal (12 h) cycle is weaker, with amplitude of less than 0.3 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.