We report a detailed investigation of vibrational modes, structure, and dynamics of elemental sulfur in the glassy and the supercooled state, using Raman scattering and ab initio calculations. Polarized Raman spectra are recorded--for sulfur quenched from 473 K--over a broad temperature range from 93 K to 273 K where the supercooled liquid crystallized. The temperature induced shifts of the majority of the vibrational modes are determined and compared with the corresponding ones of crystalline sulfur. Analysis of the reduced isotropic spectra showed that the structure of the quenched product is composed of eight member rings (S8) and polymeric chains (Sμ) with a relative fraction comparable to that of the parent liquid at 473 K. Low temperature spectra, where spectral line broadening due to thermal effects is limited, revealed that two different polymeric species are present in the glass with distinct vibrational frequencies. Their interpretation was assisted by ab initio calculations used to simulate the vibrational frequencies of polymeric chains S(8k) (k = 1, ..., 7). Theoretical results exhibit an increasing breathing mode frequency for sulfur chains up to k = 2, although it remains constant beyond the above value. The polymeric content is metastable; heating the glass above its glass transition temperature, T(g), destabilizes the chains and drives them back to the more thermodynamically stable rings. This bond interchange mechanism provides the structural origin of a secondary relaxation process in supercooled sulfur reported long ago, which has been also considered as a complication in the correct fragility estimation of this material. Finally, the Boson peak of the glass was found to exhibit strong temperature dependence even at temperatures below T(g).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.