Blooms of toxic cyanobacteria are well-known phenomena in many regions of the world. Microcystin (MC), the most frequent cyanobacterial toxin, is produced by entirely different cyanobacteria, including unicellular, multicellular filamentous, heterocytic, and non-heterocytic bloom-forming species. Planktothrix is one of the most important MC-producing genera in temperate lakes. The reddish color of cyanobacterial blooms viewed in a gravel pit pond with the appearance of a dense 3 cm thick layer (biovolume: 28.4 mm3 L−1) was an unexpected observation in the shallow lake-dominated alluvial region of the Carpathian Basin. [d-Asp3, Mdha7]MC–RR was identified from the blooms sample by MALDI-TOF and NMR. Concentrations of [d-Asp3, Mdha7]MC–RR were measured by capillary electrophoresis to compare the microcystin content of the field samples and the isolated, laboratory-maintained P. rubescens strain. In analyzing the MC gene cluster of the isolated P. rubescens strain, a deletion in the spacer region between mcyE and mcyG and an insertion were located in the spacer region between mcyT and mcyD. The insertion elements were sequenced and partly identified. Although some invasive tropical cyanobacterial species have been given a great deal of attention in many recent studies, our results draw attention to the spread of the alpine organism P. rubescens as a MC-producing, bloom-forming species.
Waterbloom samples of Microcystis aeruginosa and Planktothrix agardhii were collected from a variety of ponds, lakes and reservoirs in Hungary. Samples were tested with matrix-assisted laser desorption/ionization - time-of-flight mass spectrometry (MALDI-TOF MS) to identify the microcystin forms. The concentration of the microcystins was measured with capillary electrophoresis and the toxicity was tested by sinapis test. DNA was extracted from the samples and tested using a range of primers linked to the biosynthesis of microcystin. All of the fourteen collected samples gave positive results for the presence of the mcy genes with PCR products with sizes between of 425 and 955 bp, respectively, indicating the presence of the genes implicated in the production of microcystins. The results showed that a wide range of microcystin (MC) forms were detected in the Microcystis containing samples, among which MC-LR, -RR, and -YR were the most common. The highest MC concentration was 15,701 mg g-1, which was detected in an angling pond. The samples containing Planktothrix agardhii were less toxic, and the most common form in this species was the Asp3-MC-LR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.