Non-oxide ceramic fibers are of considerable interest due to the ability to combine the high performance, especially high temperature thermal and creep resistance, with the structural advantages of fibers including their use as reinforcements for metal (MMCs) and ceramic matrix composites (CMCs). In this paper the development of CVD SiC fibers and three generations of polymer derived SiC fibers over the past 50 years are discussed, illustrating the effect of fiber precursor and processing on the microstructure and physical properties of the non-oxide ceramic fibers. Additionally recent advances in research and development related to fibers from SiC and SiCN systems are presented with discussion of the current focus on reducing the costs of the fiber processing, while increasing their thermostructural stability.
An interesting alternative for the processing of non-oxide ceramic fibres at lower costs than that for the current commercially available fibre types was developed by modifying different commercially available liquid oligosilazanes (ML33 and HTT1800) into polysilazanes by selective cross-linking via the N-H and Si-H groups with tetra-n-butylammoniumfluoride (TBAF) as a catalyst. Termination of the reaction with calcium borohydride allows the processing of meltable solid polysilazanes (ML33S and HTTS) with tailored chemical and thermal properties, to fulfil the requirements for the melt spinning of mechanically stable and homogeneous polymeric fibres. The chemical and thermal stability of the polysilazanes ML33S and HTTS were investigated by using GPC, DSC and rheological measurements.These techniques indicate the dependency of the molecular weight and glass temperature on the catalytical cross-linking conditions. Polymers with up to $10 000 g mol À1 show glass-liquid transition (T g ) between 65 and 81 C and viscoelasticity, which are essential properties for the melt-spinning process. The thermal stability of ML33S is ensured up to 220 C. In contrast the thermal stability of HTTS is limited to 170 C due to the presence of vinyl-groups. The viscoelastic behaviour of the polymer melts, measured by oscillatory rheometry, and the sufficient thermal stability allowed the continuous processing of stable green fibres by melt spinning in the temperature range of 110 to 130 C. After fast electron beam irradiation curing of the green fibres and pyrolysis of continuous amorphous ceramic SiCN fibres from both ML33S and HTTS polysilazanes were successfully synthesized, while a defined T g point influences the shape and the smoothness positively.
This work reports the processing of large diameter ceramic SiCN monofilaments via the precursor route using two chemically different polysilazanes ML33S and HTTS self-synthesized from respective commercially available oligosilazanes. The melt-spinning of continuous polymer fibers with controllable diameters from 35 to 150 mm and their pyrolysis to ceramic SiCN fibers is not influenced by differences in the chemical structure of the polysilazanes. In contrast, the necessary e-beam curing dose is reduced by Si-vinyl groups from 600 kGy for ML33S (vinyl free) to 200 kGy for HTTS derived polymer fibers. The curing step leads to an enhanced handleability important for further pyrolysis at 1100 C in nitrogen and to an increase in ceramic yield. The resulting ceramic SiCN fibers from both systems have similar mechanical and thermal behavior, indicating quite a low influence of the polysilazane type on these properties. For the first time a comprehensive investigation of the effect of fiber diameter on the tensile strength is reported for SiCN fibers. The average strength increases from $800 MPa for 90 mm diameter fibers to $1600 MPa for the 30 mm diameter fibers. Bend Stress Relaxation (BSR) tests demonstrated that no stress relaxation occurs up to 1000 C for SiCN monofilaments and the creep resistance is equal to or better than commercially available SiC monofilaments produced by chemical vapour deposition (CVD). The oxidation resistance is also comparable to commercially available oxygen free CVD SiC fibers (SCS-6). The ceramic fibers in this study were pyrolyzed at low temperature (1100 C) and have high oxygen content (13 to 29 wt%). The high temperature creep resistance and oxidation resistance is expected to improve if the oxygen content is reduced and the pyrolysis temperature increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.