The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon–phonon interaction, enhancing or suppressing it.
We propose a fast and non-destructive method to characterize the absolute diameter and uniformity of micrometer-scale fiber tapers using a pump and probe forward Brillouin scattering setup. The fundamental torsional-radial acoustic mode supported by the wire is excited using a pulsed pump laser and oscillates at a frequency that is inversely proportional to the taper waist diameter. This standing time-varying torsional-radial wave induces polarization modulation on a probe signal, whose spectrum structure reveals the sample diameter and its non-uniformity. By comparing our results with measurements using scanning-electron microscopy, a relative deviation of 1% or less was demonstrated, and diameter non-uniformity of less than 0.5% could be detected.
Phonons play a key role in the physical properties of materials, and have long been a topic of study in physics. Nanoscale experimental methods to excite and detect phonons are imperative for their application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.