The analysis of experimental data on negative ion yields in the interaction of electrons and molecules in organic compounds shows that there occurs an electronically excited Feshbach resonance involving singlet excitation of a molecule and capture of an additional electron into the fully symmetric Rydberg orbital produced by the singlet polarisation potential.
DCTB [(H(3)C)(3)C-p-Ph-CH=C(CH(3))-trans-CH=C(CN)(2)] has recently advanced to the most promising matrix material for matrix-assisted laser desorption/ionization (MALDI) within material sciences. However, data that would allow the evaluation of the electron-transfer reactivity within a thermochemical framework are sparse. The present study reports the first-time determination of the ionization energy (IE) of DCTB applying photoelectron (PE) spectroscopy. The experimental IE (8.54 +/- 0.05 eV) is in excellent agreement with the theoretical value of 8.47 eV, obtained by AM1 calculations. The same level of theory determines the electron affinity (EA) as 2.31 eV. Model analytes of known thermochemistry (phenanthrene [C(14)H(10)], anthracene [C(14)H(10)] and fluorofullerene [C(60)F(46/48)]) are used to bracket the electron-transfer reactivity within DCTB-MALDI. The formation of molecular ions of these analytes either is expected or is beyond the thermochemical accessibility of the DCTB matrix.
This study was undertaken to find the previously unknown lowest triplet of the isolated molecule of tetracyanoquinodimethane (TCNQ), which is a widely used organic semiconductor. The problem is topical because the triplet excitation of this compound is involved in some processes which occur in electronic devices incorporating TCNQ and its derivatives, and information on the TCNQ triplet is needed for better understanding of these processes. The lowest triplet of TCNQ was obtained at 1.96 eV using UV-vis absorption spectroscopy with Br-containing solvents. Production of the triplet band with sufficient intensity in the spectra was provided by the capacity of the Br atom to augment the triplet excitation and through using a 100 mm cuvette. The assignment of the corresponding spectral band to the triplet transition was made by observation that this band appeared only in the spectra recorded in Br-containing solvents but not in spectra recorded in other solvents. Additional support for the triplet assignment came from the overall UV-vis absorption spectra of TCNQ recorded in various solvents, using a 10 mm cuvette, in the 1.38-6.5 eV energy range. Singlet transitions of the neutral TCNQ molecule and doublet transitions of the TCNQ negative ion were identified in these overall spectra and were assigned with TD B3LYP/6-31G calculations. Determination of the lowest triplet of TCNQ attained in this work may be useful for theoretical studies and practical applications of this important compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.