Key messageUnreduced gametes.AbstractThe absence of a strict pachytene checkpoint in plants presents an opportunity to study meiosis in polyhaploid organisms. In the present study, we demonstrate that meiosis is coordinated in hybrids between disomic wheat–rye substitution lines 1Rv(1A), 2R(2D), 5R(5D), 6R(6A) and rye (Triticum aestivum L. × Secale cereale L., 4x = 28, ABDR). By using in situ hybridization with a centromere pAet6-09 probe and immunostaining with H3Ser10ph-, CENH3-, and α-tubulin-specific antibodies, we distinguished four chromosome behaviour types. The first one is a mitotic-like division that is characterized by mitotic centromere architecture, robust bipolar spindle, one-step loss of arm and centromere cohesion, and sister chromatid separation in the first and only meiotic division. The second type involves a monopolar spindle formation, which appears as a hat-shaped group of chromosomes moving in one direction, wherein MT bundles are co-oriented polewards. It prevents chromosome segregation in meiosis I, with a bipolar spindle distributing sister chromatids to the poles in meiosis II. These events subsequently result in the formation of unreduced microspores. The other two meiotic-like chromosome segregation patterns known as reductional and equational plus reductional represent stand-alone types of cell division rather than intermediate steps of meiosis I. Only sterile pollen is produced as a result of such meiotic-like chromosome behaviours. Slightly variable meiotic phenotypes are reproducibly observed in hybrids under different growth conditions. The 2R(2D)xR genotype tends to promote reductional division. In contrast, the genotypes 1Rv(1A)xR, 5R(5D)xR, and 6R(6A)xR promote equational chromosome segregation and monopolar spindle formation in addition to reductional and equational plus reductional division types.Electronic supplementary materialThe online version of this article (doi:10.1007/s00497-016-0279-5) contains supplementary material, which is available to authorized users.
Meiosis in wide F 1 hybrids in the tribe Triticeae is complex and irregular. Despite extensive research, the meiotic pathways in such hybrids remain largely unknown. In this study, the effect of the genotypes of disomic wheat-rye substitution lines on the regulation of meiosis in ABDR amphihaploids was analysed by comparing microsporogenesis and seed set under self pollination in hybrids of normal bread wheat (Triticum aestivum L.) and wheats with single chromosome substitutions 1R(1A), 1Rv(1A),
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.