We investigate pre-merger coherent radio emission from neutron star mergers arising due to the magnetospheric interaction between compact objects. We consider two plausible radiation mechanisms, and show that if one neutron star has a surface magnetic field šµ s ā„ 10 12 G, coherent millisecond radio bursts with characteristic temporal morphology and inclination angle dependence are observable to Gpc distances with next-generation radio facilities. We explore multi-messenger and multi-wavelength methods of identification of a NS merger origin of radio bursts, such as in fast radio burst surveys, triggered observations of gamma-ray bursts and gravitational wave events, and optical/radio follow-up of fast radio bursts in search of kilonova and radio afterglow emission. We present our findings for current and future observing facilities, and make recommendations for verifying or constraining the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsācitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.