The main objective of the work reported here was the analysis and evaluation of halloysite nanotubes (HNTs) as natural flame retardancy filler in partially biobased polyamide 610 (PA610), with 63% of carbon from natural sources. HNTs are naturally occurring clays with a nanotube-like shape. PA610 compounds containing 10%, 20%, and 30% HNT were obtained in a twin-screw co-rotating extruder. The resulting blends were injection molded to create standard samples for fire testing. The incorporation of the HNTs in the PA610 matrix leads to a reduction both in the optical density and a significant reduction in the number of toxic gases emitted during combustion. This improvement in fire properties is relevant in applications where fire safety is required. With regard to calorimetric cone results, the incorporation of 30% HNTs achieved a significant reduction in terms of the peak values obtained of the heat released rate (HRR), changing from 743 kW/m2 to about 580 kW/m2 and directly modifying the shape of the characteristic curve. This improvement in the heat released has produced a delay in the mass transfer of the volatile decomposition products, which are entrapped inside the HNTs’ lumen, making it difficult for the sample to burn. However, in relation to the ignition time of the samples (TTI), the incorporation of HNTs reduces the ignition start time about 20 s. The results indicate that it is possible to obtain polymer formulations with a high renewable content such as PA610, and a natural occurring inorganic filler in the form of a nanotube, i.e., HNTs, with good flame retardancy properties in terms of toxicity, optical density and UL94 test.
An evaluation of durability and mechanical strength in a cement mortar is presented in this work. A slag coming from steelmaking processes has been added to the mortar. This slag has similar properties to the ones of cement, and it has been added to the mortar in different proportions with two sizes of granulometry. With this addition, better properties against the action of sulfates are expected, and therefore, the presence of fracture and wear in the structures can be reduced. This allows more safety and increased life in the mortar, and the most important thing is that, this will contribute to decrease the environmental contamination because the slag used in this work is coming from the industrial waste, which is produced in big amounts in the steel sector worldwide. The studied materials are mortar cubes in which the mechanical strength has been evaluated. The dimensions of the samples are around 50×50×50 mm 3 and, according to the standard ASTM C109, these cubes should be evaluated during 1, 3, 7, 28, 56 and 118 days. The expansion tests to evaluate the sulfates attack is performed according to the standard ASTM C1012, in bars of around 25×25×285 mm 3 . These bars were submerged in water with lime and when the bars obtained a strength bigger than 20 MPa, they were also submerged in a sulfate solution, which was prepared 24 hours earlier with a pH that should be between 6 and 8. In this way, from the point of view of strength to sulfate attack, the mortar durability is evaluated by employing techniques such as X-ray diffraction, X-ray fluorescence and scanning electron microscopy, which allow us to determine the presence of different components that are responsible for the expansion as the formation of gypsum, ettringite, and thaumasite. As a result of this research, it is evident that slag with smaller particle size shows positive behavior against the action of sulfates, thus revealing minimum expansion percentages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.