We review the main results obtained by the BRAHMS collaboration on the properties of hot and dense hadronic and partonic matter produced in ultrarelativistic heavy ion collisions at RHIC. A particular focus of this paper is to discuss to what extent the results collected so far by BRAHMS, and by the other three experiments at RHIC, can be taken as evidence for the formation of a state of deconfined partonic matter, the so called quark-gluon-plasma (QGP). We also discuss evidence for a possible precursor state to the QGP, i.e. the proposed Color Glass Condensate.
We present measurements of the ratio of the proton elastic electromagnetic form factors, p G Ep /G M p . The Jefferson Lab Hall A Focal Plane Polarimeter was used to determine the longitudinal and transverse components of the recoil proton polarization in ep elastic scattering; the ratio of these polarization components is proportional to the ratio of the two form factors. These data reproduce the observation of Jones et al. ͓Phys. Rev. Lett. 84, 1398 ͑2000͔͒, that the form factor ratio decreases significantly from unity above Q 2 ϭ1 GeV 2 .
We have measured rapidity densities dN/dy of π ± and K ± over a broad rapidity range (−0.1 < y < 3.5) for central Au+Au collisions at √ sNN = 200 GeV. These data have significant implications for the chemistry and dynamics of the dense system that is initially created in the collisions. The full phase-space yields are 1660±15±133 (πThe systematics of the strange to non-strange meson ratios are found to track the variation of the baryo-chemical potential with rapidity and energy. Landau-Carruthers hydrodynamic is found to describe the bulk transport of the pions in the longitudinal direction.In ultra-relativistic heavy ion collisions at RHIC energies, charged pions and kaons are produced copiously. The yields of these light mesons are indicators of the entropy and strangeness created in the reactions, sensitive observables to the possible existence of an early color deconfined phase, the so-called quark gluon plasma. In such collisions, the large number of produced particles and their subsequent reinteractions, either at the partonic or hadronic level, motivate the application of concepts of gas or fluid dynamics in their interpretation. Hydrodynamical properties of the expanding matter created in heavy ion reactions have been discussed by Landau [1] (full stopping) and Bjorken [2] (transparency), in theoretical pictures using different initial conditions. In both scenarios, thermal equilibrium is quickly achieved and the subsequent isentropic expansion is governed by hydrodynamics. The relative abundances and kinematic properties of particles provide an important tool for testing whether equilibrium occurs in the course of the collision. In discussing the source characteristics, it is important to measure most of the produced particles in order not to violate conservation laws (e.g. strangeness and charge conservation).In this letter, we report on the first measurements at RHIC energies of transverse momentum (p T ) spectra of π ± and K ± over the rapidity range −0.1 < y < 3.5 for the 5% most central Au+Au collisions at √ s N N = 200 GeV. The spectra are integrated to obtain yields as a function of rapidity (dN/dy), giving full phase-space (4π) yields. At RHIC energies, a low net-baryon density is observed at mid-rapidity [3], so mesons may be predominantly produced from the decay of the strong color field created initially. At forward rapidities, where primordial baryons are more abundant [4], other production mechanisms, for example associated strangeness production, play a larger role. Therefore, the observed rapidity distributions provide a sensitive test of models describing the space-time evolution of the reaction, such as Landau and Bjorken models [1,2]. In addition, integrated yields are a key input to statistical models of particle production [5,6].BRAHMS consists of two hadron spectrometers, a mid-rapidity arm (MRS) and a forward rapidity arm (FS), as well as a set of detectors for global event characterization [7]. Collision centrality is determined from charged particle multiplicities, measured by sc...
Transverse mass spectra of pions, kaons, and protons from the symmetric heavy-ion collisions 200A GeV S 1 S and 158A GeV Pb 1 Pb, measured in the NA44 focusing spectrometer at CERN, are presented. The mass dependence of the slope parameters provides evidence of collective transverse flow from expansion of the system in heavy-ion induced central collisions. The purpose of studying ultrarelativistic heavy-ion collisions is to understand the nature of hadronic matter under extreme conditions. Specifically, we are interested in a new form of matter, quark-gluon plasma, which may be produced in such collisions. Transverse momentum distributions are one of the most common tools used in studying high energy collisions. This is because the transverse motion is generated during the collision and hence is sensitive to the dynamics. More than 45 years ago, Fermi proposed a statistical method [1] to understand the results of high energy hadron-hadron collisions. Because of saturation of the phase space, the multiparticle production resulting from the high energy elementary collisions is consistent with a thermal description [1][2][3]. In heavy-ion collisions hydrodynamical behavior, that is, local thermal equilibrium and collective motion, may be expected because of the large number of secondary scatterings.It is now possible to identify and quantitatively measure the collective motion by systematic studies of results from different collision systems, using light (Si at BNL and S at CERN) and heavy (Au at BNL and Pb at CERN) ion beams [4][5][6]. A high degree of nuclear stopping and a strong Coulomb effect (also due to the high stopping) have already been reported in Pb 1 Pb central collisions [7,8]. In this Letter, we present transverse momentum distributions of pions, kaons, and protons, measured in the NA44 spectrometer, from Pb 1 Pb and S 1 S collisions. Results of calculations from a hydrodynamical model [5] will be used to aid in this analysis.The NA44 magnetic focusing spectrometer consists of two room-temperature dipoles and three superconducting quadruples. Particles originating from the target are focused at a plane about ten meters downstream and detected by a tracking system consisting of a pad chamberstrip chamber-scintillator hodoscope complex. Particle identification is done with two threshold Cherenkov counters and two highly segmented TOF hodoscopes. The phase-space coverage (transverse momentum p T vs rapidity y) is determined by the combination of the spectrometer angle (relative to the beam direction) and the nominal momentum setting of the magnets. The momentum resolution is typically s p ͞p # 0.2% and the TOF counters have an average time resolution of 100 ps. More details of the spectrometer can be found elsewhere [9].The spectrometer momentum range is 620% around the nominal values of 4 and 8 GeV͞c. For kaons and protons, the 8 GeV͞c setting was used and the rapidity coverage is (2.5-3.4) and (2.4-2.8) for kaons and protons, respectively. Two angular settings (44 and 130 mrad) were utilized in order ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.