BackgroundDiabetes prevalence is increasing globally, and Sub-Saharan Africa is no exception. With diverse health challenges, health authorities in Sub-Saharan Africa and international donors need robust data on the epidemiology and impact of diabetes in order to plan and prioritise their health programmes. This paper aims to provide a comprehensive and up-to-date review of the epidemiological trends and public health implications of diabetes in Sub-Saharan Africa.MethodsWe conducted a systematic literature review of papers published on diabetes in Sub-Saharan Africa 1999-March 2011, providing data on diabetes prevalence, outcomes (chronic complications, infections, and mortality), access to diagnosis and care and economic impact.ResultsType 2 diabetes accounts for well over 90% of diabetes in Sub-Saharan Africa, and population prevalence proportions ranged from 1% in rural Uganda to 12% in urban Kenya. Reported type 1 diabetes prevalence was low and ranged from 4 per 100,000 in Mozambique to 12 per 100,000 in Zambia. Gestational diabetes prevalence varied from 0% in Tanzania to 9% in Ethiopia. Proportions of patients with diabetic complications ranged from 7-63% for retinopathy, 27-66% for neuropathy, and 10-83% for microalbuminuria. Diabetes is likely to increase the risk of several important infections in the region, including tuberculosis, pneumonia and sepsis. Meanwhile, antiviral treatment for HIV increases the risk of obesity and insulin resistance. Five-year mortality proportions of patients with diabetes varied from 4-57%. Screening studies identified high proportions (> 40%) with previously undiagnosed diabetes, and low levels of adequate glucose control among previously diagnosed diabetics. Barriers to accessing diagnosis and treatment included a lack of diagnostic tools and glucose monitoring equipment and high cost of diabetes treatment. The total annual cost of diabetes in the region was estimated at US$67.03 billion, or US$8836 per diabetic patient.ConclusionDiabetes exerts a significant burden in the region, and this is expected to increase. Many diabetic patients face significant challenges accessing diagnosis and treatment, which contributes to the high mortality and prevalence of complications observed. The significant interactions between diabetes and important infectious diseases highlight the need and opportunity for health planners to develop integrated responses to communicable and non-communicable diseases.
In this study quantitation of the degree of deficiency of the blood-brain barrier (BBB) in patients with multiple sclerosis or brain tumors, by using MRI, is shown to be possible. As a measure of permeability of the BBB to Gadolinium-DTPA (Gd-DTPA) the flux per unit of distribution volume per unit of brain mass was used. This quantity was found by introducing the longitudinal relaxation rate (R1) as a measure of concentration of Gd-DTPA in the brain tissue in the mathematical model for the transcapillary transport over the BBB. High accordance between the observed data points and the model was found, and the results were comparable to results obtained from similar studies using positron emission tomography. The improved possibility of quantitating the defect of the BBB by MRI may give new information about pathogenesis or etiology, and leads to improved methods in monitoring the efficacy of treatments in intracranial diseases.
In the present study, it is shown that it is possible to quantify myocardial perfusion using magnetic resonance imaging in combination with gadolinium diethylenetriaminopentaacetic acid (Gd-DTPA). Previously, a simple model and method for measuring myocardial perfusion using an inversion recovery turbo-FLASH (fast low-angle shot) sequence and Gd-DTPA has been presented. Here, an extension of the model is presented taking into account fast and slow water exchange between the compartments, enabling the calculation of the unidirectional influx constant (Ki) for Gd-DTPA, the distribution volume of Gd-DTPA (lambda), the vascular blood volume (Vb), and the time delay through the coronary arteries (delta T). The model was evaluated by computer simulation and used on experimental results from seven healthy subjects. The results in the healthy volunteers for a region of interest placed in the anterior myocardial wall were (mean +/- SD) Ki = 54 +/- 10 ml/100 g/min, lambda = 30 +/- 3 ml/100 g, Vb = 9 +/- 2 ml/100 g, delta T = 3.2 +/- 1.1 s. These results are in good agreement with similar results obtained by other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.