The aging process is accompanied by an impairment of the physiological systems including the immune system. This system is an excellent indicator of health. We have also observed that several functions of the immune cells are good markers of biological age and predictors of longevity. In agreement with the oxidation-inflammation theory that we have proposed, the chronic oxidative stress that appears with age affects all cells and especially those of the regulatory systems, such as the nervous, endocrine and immune systems and the communication between them. This fact prevents an adequate homeostasis and, therefore, the preservation of health. We have also proposed an involvement of the immune system in the aging process of the organism, concretely in the rate of aging, since there is a relation between the redox state and functional capacity of the immune cells and the longevity of individuals. A confirmation of the central role of the immune system in oxi-inflamm-aging is that several lifestyle strategies such as the administration of adequate amounts of antioxidants in the diet, physical exercise, physical and mental activity through environmental enrichment and hormetic interventions improve functions of immune cells, decreasing their oxidative stress, and consequently increasing the longevity of individuals. Recent results in mice of investigations on the effects of a new environmental enrichment (bathing in waters) as well as a hormetic intervention with slight infections (caused by injection of E.coli lipopolysaccharide, LPS), on several functions and redox parameters are shown. The advantages and possible problems of the use of those interventions to achieve a healthy aging and longevity are discussed.
Obesity and aging share an impaired immune system and oxidative and inflammatory stress. Therefore, the hypothesis of obesity as a possible model of premature immunosenescence has been proposed. In this study, we investigated whether adult obese mice, as a consequence of being fed with a fat-rich diet during their adolescence, showed premature immunosenescence and if this was aggravated with aging. Peritoneal cell suspensions were obtained when ICR/CD1 obese female mice were adults (28 weeks) and old (72 weeks), and several functions and antioxidant defenses were evaluated. The results showed that the chemotaxis of both macrophages and lymphocytes, phagocytosis of macrophages, activity of natural killer cells, proliferative response of lymphocytes, interleukin-1β, tumor necrosis factor-alpha, interleukin-6, interleukin-2, and interleukin-10 released in leukocyte cultures, as well as antioxidant and oxidant capacity were significantly impaired in adult obese mice with respect to adult nonobese mice, with values similar to those in chronologically old mice. When these obese animals grew older, although having been fed with a standard diet, they showed a higher deterioration of their immune functions in comparison with the old control group. In conclusion, these results demonstrate that a high fat intake during adolescence can produce an obesity state in adult age associated with a premature immunosenescence, which is aggravated through aging.
These data suggest that dietary supplementation with monounsaturated and n-3 polyunsaturated fatty acids could be an effective nutritional intervention to restore the immune response and oxidative stress state, which are impaired in obese mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.