Numerous studies and thermal imaging inspection of multi-storey residential buildings indicate characteristic places with increased heat loss. In houses built in accordance with modern domestic regulatory requirements for the thermal resistance of enclosing structures, the actual thermal resistance of walls and windows coincides with the standard. However, nodes of elements of external enclosing structures with increased values of heat loss were found. Insulation of the junction points allows increasing the thermal resistance of the external enclosing structures. In order to increase the energy efficiency of a building, the design of the insulation of the junction of the ceiling in the technical attic has been proposed, which is protected by a patent for a useful model. The linear heat transfer coefficients of the junction point of the ceiling in the attic are analyzed. It was revealed that such information was not indicated in the regulatory documents. Reducing heat loss is achieved by arranging additional layers of insulation in the form of aerogel slabs at the junction of the ceiling to the external enclosing structures. The analysis of the energy efficiency of the proposed design of the junction unit of the attic floor as a "cold bridge" was carried out according to the results of mathematical modeling in the DAMWERK software package. Based on the simulation results, the temperature distribution in the junction of the ceiling in the technical attic was established. The linear heat transfer coefficient of the recommended junction point of the ceiling in the technical attic has been determined, the value of which should be taken into account when developing the Energy Efficiency section. The results obtained confirm the feasibility of introducing the proposed structural design of the floor abutment unit in the technical attic, which will improve the energy efficiency of the building's thermal insulation envelope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.