Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is the a principal pungent ingredient of hot red and chili peppers that belong to the plant genus Capsicum (Solanaceae). Capsaicin is a cancer-suppressing agent. It blocks the translocation of nuclear factor kappa B (NF-kB), activator protein 1 (AP-1), and signal transducer and activator of transcription (STAT3) signaling pathway that are required for carcinogenesis. The anti-inflammatory potential of capsaicin is attributed to its inhibitory effect on inducible COX-2 mRNA expression. Cytochrome P4502E1 mediates the activation of xenobiotics such as vinyl carbamate and dimethyl nitrosamine to their toxic metabolites. This metabolic activation of xenobiotics by Cytochrome P4502E1 has been shown to be inhibited by capsaicin. Capsaicin also generates reactive oxygen species in cells with resultant induction of apoptosis and cell cycle arrest, which is beneficial for cancer chemoprevention. Therefore, the use of capsaicin as a chemopreventive agent is of immense benefit for cancer chemoprevention. The search strategy included printed journals, pubmed, and medline, using the terms 'capsaicin' and 'anticancer' citations, relevant to anticancer properties of capsaicin.
A wide variety of phenolic compounds derived from spices possess potent antioxidant, anti-inflammatory, antimutagenic, and anticarcinogenic activities. [6]-gingerol (1-[4'-hydroxy-3'-methoxyphenyl]-5-hydroxy-3-decanone) is the major pungent principle of ginger, with numerous pharmacological properties including antioxidant, anti-inflammation, and antitumor promoting properties. It could decrease inducible nitric oxide synthase (iNOS) and tumor necrosis factor alpha (TNF-alpha) expression through suppression of I-kappaB alpha (IkappaBalpha) phosphorylation, nuclear factor kappa B (NF-kappaB) nuclear translocation. Other antiproliferative mechanisms of [6]-gingerol include the release of Cytochrome c, Caspases activation, and increase in apoptotic protease-activating factor-1 (Apaf-1) as mechanism of apoptosis induction. Taken together, the chemopreventive potentials of [6]-gingerol present a promising future alternative to therapeutic agents that are expensive, toxic, and might even be carcinogenic.
The fat body in invertebrates was shown to participate in energy storage and homeostasis, apart from its other roles in immune mediation and protein synthesis to mention a few. Thus, sharing similar characteristics with the liver and adipose tissues in vertebrates. However, vertebrate adipose tissue or fat has been incriminated in the pathophysiology of metabolic disorders due to its role in production of pro-inflammatory cytokines. This has not been reported in the insect fat body. The link between the fat body and adipose tissue was examined in this review with the aim of determining the principal factors responsible for resistance to inflammation in the insect fat body. This could be the missing link in the prevention of metabolic disorders in vertebrates, occasioned by obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.