Abstract. In this paper, the features of the microstructure of magnetic domains observed in ferrite-garnet films (FGF) have been presented. The studied FGF with orientation (111) were grown on gallium-gadolinium substrate by using liquid-phase epitaxy. The study of distribution inherent to magnetic domains was carried out using magnetic force microscopy (MFM) with the scanning probe microscope NanoScope IIIa Dimension 3000 TM . In the course of these researches, optimization of the MFM method was carried out to obtain high-quality and correct images of magnetic domains in FGF. Nanorelief and magnetic microstructure of FGF surface were studied, depending on their thickness, on external magnetic field and doses of boron ion implantation. For these objects, it was established that stripe domain structure is characteristic, the period of which depends on the film thickness. The nature of transformation of domain structure depending on thickness is close to that theoretically predictable at low thicknesses (up to 10 µm). Nanorelief of film surfaces is virtually unchanged depending on thickness. An external magnetic field with the magnitude 4 mT causes significant changes in domain configuration and allows to visualize heterogeneity of magnetic structure. Ion implantation leads to a slight smoothing of nanorelief films (roughness of 0.2 nm) and to more accurate displaying the magnetic microstructure, which is associated with processes of structural ordering under ionic bombardment.Keywords: magnetic force microscopy, stripe domain structure, epitaxial yttrium-iron garnet films, ion implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.