The pathogenesis of Parkinson's disease that is the second most common neurodegenerative disease is associated with formation of different aggregates of α-synuclein (ASN), namely oligomers and amyloid fibrils. Current research is aimed on the design of fluorescent dyes for the detection of oligomeric aggregates, which are considered to be toxic and morbific spices. Fluorescent properties of series of benzothiazole trimethine and pentamethine cyanines were characterized in free state and in presence of monomeric, oligomeric and fibrilar ASN. The dyes with wide aromatic systems and bulky phenyl and alkyl substituents that are potentially able to interact with hydrophobic regions of oligomeric aggregates were selected for the studies. For majority of studied dyes noticeable changes in fluorescence characteristics were shown in the presence of fibrillar or oligomeric ASN, while the dyes slightly responded on the presence of monomeric protein. For pentamethine cyanine SL-631 and trimethine cyanine SH-299 certain specificity to oligomeric aggregates over fibrils was observed. Using these dyes at 10(-6) M concentration permits the detection of oligomeric ASN in the concentrations range of at least 0.2-2 microM. Pentamethine cyanine SL-631 is proposed as dye for fluorescent detection of oligomeric aggregates of ASN, while trimethine cyanine SH-299 is shown to be a sensitive probe both on oligomeric and fibrillar ASN. It is proposed that wide aromatic system of SL-631 pentamethine dye molecule could better fix on the less dense and structured oligomeric formation, while less bulky and more "crescent-shape" molecule of trimethine dye SH-299 could easier enter into the groove of beta-pleated structure.
A series of pentamethine cyanine dyes with cyclohexene or cyclopentene group in polymethyne chain, assumed as DNA groove-binders, were studied as fluorescent probes for nucleic acids as well as for native and denatured proteins. It was revealed that the presence of methyl or dimethyl substituent in 5 position of the cyclohexene group hinders the formation of dye-DNA fluorescent complex, while the methyl substituent in 2 position leads to the increasing of the dye-DNA complex fluorescence intensity. The dyes SL-251, SL-1041, and SL-1046 containing methyl group in the 2 position of the cyclic group, are reported as bright DNA-sensitive dyes. The study of the dyes DNA-binding specificity demonstrated significant AT-preference that points to the groove-binding interaction mode. At the same time, the dyes SL-251, SL-377, and SL-957 with the 2-methyl substituted cyclohexene group were shown to be sensitive fluorescent dyes both for nonspecific (in SDS presence) proteins detection and for native BSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.