The interplays between acoustic and intrinsic modes in a model of a Rijke burner are revealed and their influence on the prediction of thermoacoustic instabilities is demonstrated. To this end, the system is examined for a range of time delays, temperature ratios and reflection coefficients as adjustable parameters. A linear acoustic network model is used and all modes with frequency below the cut-on frequency for non-planar acoustic waves are considered. The results show that when reflection coefficients are reduced, the presence of a pure ITA mode limits the reduction in the growth rate that usually results from a reduction of the reflection coefficients. In certain conditions, the growth rates can even increase by decreasing reflections. As the time delay of the flame and thus the ITA frequency decreases, the acoustic modes couple to and subsequently decouple from the pure ITA modes. These effects cause the maximum growth rate to alternate between the modes. This investigation draws a broad picture of acoustic and intrinsic modes, which is crucial to accurate prediction and interpretation of thermoacoustic instabilities.
One of the major concerns in the operability of power generation systems is their susceptibility to combustion instabilities. In this work, we explore whether a heat exchanger, an integral component of a domestic boiler, can be made to act as a passive controller that suppresses combustion instabilities. The combustor is modelled as a quarterwave resonator (1-D, open at one end, closed at the other) with a compact heat source inside, which is modelled by a time-lag law. The heat exchanger is modelled as an array of tubes with bias flow and is placed near the closed end of the resonator, causing it to behave like a cavity-backed slit plate: an effective acoustic absorber. For simplicity and ease of analysis, we treat the physical processes of heat transfer and acoustic scattering occurring at the heat exchanger as two individual processes separated by an infinitesimal distance. The aeroacoustic response of the tube array is modelled using a quasi-steady approach and the heat transfer across the heat exchanger is modelled by assuming it to be a heat sink. Unsteady numerical simulations were carried out to obtain the heat exchanger transfer function, which is the response of the heat transfer at heat exchanger to upstream velocity perturbations. Combining the aeroacoustic response and the heat exchanger transfer function, in the limit of the distance between these processes tending to zero, gives the net influence of the heat exchanger. Other parameters of interest are the heat source location and the cavity length (the distance between the tube array and the closed end). We then construct stability maps for the first resonant mode of the aforementioned combustor configuration, for various parameter combinations. Our model predicts that stability can be achieved for a wide range of parameters.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.