There is increasing evidence that the growth and spread of cancers is driven by a small subpopulation of cancer stem cells (CSCs) - the only cells that are capable of long-term self-renewal and generation of the phenotypically diverse tumour cell population. Current failure of cancer therapies may be due to their lesser effect on potentially quiescent CSCs which remain vital and retain their full capacity to repopulate the tumour. Treatment strategies for the elimination of cancer therefore need to consider the consequences of the presence of CSCs. However, the development of new CSC-targeted strategies is currently hindered by the lack of reliable markers for the identification of CSCs and the poor understanding of their behaviour and fate determinants. Recent studies of cell lines derived from oral squamous cell carcinoma (OSCC) indicate the presence of subpopulations of cells with phenotypic and behavioural characteristics corresponding to both normal epithelial stem cells and to cells capable of initiating tumours in vivo. The present review discusses the relevance to OSCC of current CSC concepts, the state of various methods for CSC identification, characterization and isolation (clonal functional assay, cell sorting based on surface markers or uptake of Hoechst dye), and possible new approaches to therapy.
Ovarian cancer spreads intraperitoneally and forms fluid, whereby the diagnosis and therapy often become delayed. As the complement (C) system may provide a cytotoxic effector arm for both immunological surveillance and mAb-therapy, we have characterised the C system in the intraperitoneal ascitic fluid (AF) from ovarian cancer patients. Most of the AF samples showed alternative and classical pathway haemolytic activity. The levels of C3 and C4 were similar to or in the lower normal range when compared to values in normal sera, respectively. However, elevated levels of C3a and soluble C5b-9 suggested C activation in vivo. Malignant cells isolated from the AF samples had surface deposits of C1q and C3 activation products, but not of C5b-9 (the membrane attack complex; MAC). Activation could have become initiated by anti-tumour cell antibodies that were detected in the AFs and/or by changes on tumour cell surfaces. The lack of MAC was probably due to the expression of C membrane regulators CD46, CD55 and CD59 on the tumour cells. Soluble forms of C1 inhibitor, CD59 and CD46, and the alternative pathway inhibitors factor H and FHL-1 were present in the AF at concentrations higher than in serum samples. Despite the presence of soluble C inhibitors it was possible to use AF as a C source in antibody-initiated killing of ovarian carcinoma cells. These results demonstrate that although the ovarian ascitic C system fails as an effective immunological surveillance mechanism, it could be utilised as an effector mechanism in therapy with intraperitoneally administrated mAbs, especially if the intrinsic C regulators are neutralised.
Khat chewing is a widespread habit that has a deep-rooted sociocultural tradition in Africa and the Middle East. The biological effects of khat are inadequately investigated and controversial. For the first time, we show that an organic extract of khat induces a selective type of cell death having all morphological and biochemical features of apoptotic cell death. Khat extract was shown to contain the major alkaloid compounds cathinone and cathine. The compounds alone and in combination also induced apoptosis. Khat-induced apoptosis occurred synchronously in various human cell lines (HL-60, NB4, Jurkat) within 8 h of exposure. It was partially reversed after removal of khat and the effect was dependent on de novo protein synthesis, as demonstrated by cotreatment with cycloheximide. The cell death was blocked by the pan-caspase inhibitor Z-VAD-fmk, and also by submicromolar concentrations of Z-YVAD-fmk and Z-IETD-fmk, inhibitors of caspase-1 and -8, respectively. The 50% inhibition constant (IC 50 ) for khat (200 mg ml À1 )-induced apoptosis by Z-VAD-fmk, Z-YVAD-fmk and Z-IETD-fmk was 8 Â 10 À7 M as compared to 2 Â 10 À8 M and 8 Â 10 À8 M, respectively. Western blot analysis showed a specific cleavage of procaspase-3 in apoptotic cells, which was inhibited by Z-VAD-fmk. The cell death by khat was more sensitively induced in leukaemia cell lines than in human peripheral blood leukocytes. It is concluded that khat induces a rather swift and sensitive cell death by apoptosis through mechanisms involving activation of caspase-1, -3 and -8.
Programmed death (apoptosis) of the rat myelocytic leukemic cell line IPC-81 was triggered by cyclic adenosine monophosphate (cAMP) analogs or by agents (cholera toxin, prostaglandins) increasing the endogenous cAMP level. The induction of cell death by cholera toxin was preceded by increased activation of cAMP-kinase. Cell lysis started already 5 hr after cAMP challenge and was preceded by internucleosomal DNA fragmentation and morphological changes characteristic of apoptosis. The cell suicide could be prevented by inhibitors of macromolecular synthesis. cAMP analogs induced cell death in a positively cooperative manner (apparent Hill coefficient of 2.9), indicating that triggering of the apoptotic process was under stringent control. There was a strong synergism between cAMP analogs complementing each other in the activation of cAMP-dependent protein kinase I (cAKI). No such synergism was noted for analogs complementing each other in the activation of cAKII. It is concluded that apoptosis can be induced solely by activation of cAKI. The IPC-81 cells expressed about four times more cAKI than cAKII. The expression of cAK subunits, on the protein and mRNA levels, was only minimally affected by cholera toxin treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.