To date, the possibility of lifetime extension for nuclear power units beyond the project period is extremely important, as well as developing new approaches to expand the previously estimated possible years of lifetime extension of power units, for which this period is almost exhausted. According to the design limit of safe operation for power units with VVER type of reactors - the limiting factor in terms of changes in the geometric state is the contact of baffle and peripheral fuel. Preliminary analysis of the geometric changes of reactor internals, which is mandatory during lifetime extension, showed that more expected is the contact of the baffle metal and barrel, which precedes the contact with nuclear fuel assemblies. An additional factor is that due to the design features of the baffle there are radial flows of coolant from the core to bypass. This situation is not foreseen by the project, so there are discussions in the domestic industry about further safe operation. The main reason for the change in geometry is the combination of accumulated radiation dose and the temperature field unevenness. The "classical" analysis, which is used for lifetime extension, consists of successive stages: the assessment of radiation conditions, temperature field calculation and, finally, the stress-strain state estimation. This approach is acceptable only in the case of a weak link between the physical modules (steps), and requires the conservative evaluation at each step. To date, this approach has almost exhausted itself, as the reserve of "guaranteed safe operation" years, which are estimated by the consistent approach, is almost expired. This paper describes the module for radiation loads estimation, which is a component of the multiphysical code for the analysis of baffle state in terms of its geometry degradation. This approach is developed by specialists of IPP-Centre LLC and PhD students and students of the university.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.