UDC 662.215 O. L. Kyrychenko 1 , cand. Sc. (Tech.), orcid.org/0000-0002-1331-9323, V. V. Kulivar 2 , orcid.org/0000-0002-7817-9878, O. V. Skobenko 2 , cand. Sc. (Tech.), Assoc. Prof., orcid.org/0000-0003-4606-4889, O. V. Khalymendyk 2 , cand. Sc. (Tech.), Assoc. Prof., orcid.org/A TecHNique TO MeASuRe SeNSiTiViTy OF eXPLOSiVeS TO THe eFFecT OF LASeR PuLSe RADiATiONPurpose. Improving reliability of the technique to determine sensitivity of explosives to laser pulse radiation involving the method for defining function of energy distribution in a laser beam.Methodology. Experimental studies, physical and mathematical modeling.Findings. The available techniques to determine sensitivity of explosives to laser pulse radiation have been analyzed. The tech nique to define the function of energy distribution in a laser beam is rather simple not requiring complex experimental equipment.Originality. Regularities of energy density distribution within the laser ray crosssection have been determined. It has been demonstrated that both theoretical and experimental dependences of energy density upon the laser ray radius are characterized by Gaussian distribution being little different from each other. Changes in radiation intensity within the laser ray crosssection have been determined experimentally.Practical value. Practical use of the laser initiation technique is connected with the improvement of the known methods to develop profiled detonation waves within the explosive charges as well as plane, cylindrical, conical, and spherical shock waves in different materials. Methods to develop such waves are characterized by maximum high repeatability of results and high efficiency in terms of minimum possible power consumption.
Purpose. To analyse the experimental results, to describe physical mechanism of blasted rock disintegration and develop meth odology to calculate blastwave parameters within the nearexplosion zone, and to study possible role of thermoelastic stresses in rock fragmentation to ultradisperse fractions in the nearexplosion zone.Methodology. The experiments involved a method to measure dynamic compressibility of bituminous coals based on the de termination of both velocity of blast waves and mass velocity of particles beyond the front. A reflection method is used to construct isentropes of the explosive detonation products and their impact adiabat.findings. Experimental studies are carried out to analyse compressibility parameters of bituminous coals -blast wave velocity and mass velocity of particles beyond the blast wave front. Impact adiabats for emulsion explosive ЕРА Р3 and bituminous coals are constructed. A set of theoretical studies is performed.originality. Methodology to evaluate blastwave parameters within the zone near the borehole or blasthole charge explosion is proposed. Physical mechanism for rock breaking to ultradisperse particles is proposed. It has been specified that thermoelastic stresses may be one of the possible causes, if not the main one, of the rock breaking within the nearexplosion zone. A mechanism stipulated by the transition of microstructure of the rock crystalline components to the instable state is considered as the alternative (or additional) factor. The cause is in the oversaturation of the rock microstructure with the linear and point defects. Exceeded value of critical concentration of those defects results in the excessive reserves of internal energy with the following spontaneous breaking of chemical bonds. Impact adiabats of coking coals of three grades as well as isentrope and impact adiabat of the detona tion products of emulsion explosive ЕРА Р3 are constructed. In terms of the "pressure -mass velocity of particles" coordinates, curves of adiabats of the bituminous coals differ by not more than 4 %.Practical value. Analysis of the scientific results may be the required condition to develop additional safety measures in the sphere of environmental protection during blasting operations in terms of openpit and underground mining.
The purpose of this work is to establish regularities of the leaching process and to determine parameters for leaching ammonium perchlorate from polymer crumb as solid propellant disposal products. The process of leaching ammonium perchlorate from the polymer matrix was carried out in a flask equipped with an agitator in a polymer matrix: water ratio of 1: 2, with such changing parameters as: temperature (20-80 °С), time of extraction process (1-4 h). Then, the obtained refined polymer matrix was filtered off, dried at room temperature, and weighed. The content of the chemical composition of the polymer matrix was determined in refined polymer matrix. The obtained polymer matrix was dried at temperatures of 70 ºС, 90 ºС, 100 ºС to constant weight, with intermittent weighing of dried samples. It was determined that the degree of leaching of ammonium perchlorate from polymer matrix when the leaching time is 2-4 hours is maximum, both during the process at a temperature of 20 °C and at a temperature of 60 °C and 80 °C, respectively. It was found that the maximum degree of ammonium perchlorate leaching from polymer matrix was 82.3% in the experiment with the following modes - the process temperature was 80 °C, the speed of the mechanical stirrer was 400 rpm, and the leaching process took 4 hours. It was found that the most preferable temperature range for the drying of refined polymer matrix is 90 to 100 °С. It was determined that the refined polymer matrix is a substance which is not particularly dangerous for transportation and can be recommended for use as a filler in compositions of emulsion explosives, or for extraction of nitramine. Establishing the regularities of ammonium perchlorate extraction from polybutadiene-based solid propellant, obtained from expired loaded motor cases. The data obtained after a detailed technical and economic analysis can be considered as the basis for the creation of a pilot industrial facility for the extraction of a water-insoluble component of solid propellant, i.e. ammonium perchlorate.
The main components of high-energy compositions are nitramines: octogen (HMX) & hexogen (RDX). The solution to the problem of the lack of these components is possible through the use of returnable resources, which are obtained using a certain technology for the disposal of solid rocket fuel and ammunition, unsuitable for further use for its intended purpose. Purpose of this research is to develop a crystallization method for octogen extracted from solid rocket fuel and to obtain modified nitramine suitable for use in high-energy compositions (HEC). Parameters of the process of recrystallization of the extracted nitramine from an aqueous solution of dimethyl sulfoxide (DMSO) were determined in the laboratory: the dependence of the average particle size of the substance on the rotational speed of the mechanical stirrer and the cooling rate of the solution. The required crystal size of the modified nitramine is obtained in the process of crystallization with a rotational speed of a mechanical stirrer in the range of 200 -330 rpm and a cooling rate of an aqueous solution of DMSO not higher than 2 °C / min, it was found. Addition of seed crystals of standard nitramine up to 10 % (by weight) and 0.5 % (by weight) modifier (isomethyltetrahydrophthalic anhydride) positively affects the crystalline form of the modified product with the formation of crystals of predominantly correct isometric form. The resulting modified nitramine has characteristics that satisfy the requirements for use in HЕC. АнотаціяОсновними компонентами, що входять до складу багатьох високоенергетичних композицій є нітраміни октоген та гексоген. Вирішення проблеми дефіциту зазначених компонентів можливе за рахунок використання зворотних ресурсів, які отримують за певною технологією утилізації твердого ракетного палива та боєприпасів, непридатних для подальшого застосування за прямим призначенням. Метою даних досліджень є розробка методу кристалізації вилученого з твердого ракетного палива октогену (нітраміну) із водного розчину диметилсульфоксиду (ДМСО) та отримання модифікованого нітраміну, придатного для використання у високоенергетичних композиційних складах (ВКС). У лабораторних умовах встановлено параметри процесу перекристалізації вилученого нітраміну з водного розчину ДМСО: залежність середнього розміру частинок речовини від швидкості обертання механічної мішалки і швидкості охолодження розчину. Виявлено, що для отримання кристалів модифікованого нітраміну необхідного розміру потрібно, щоб у процесі кристалізації швидкість обертання механічної мішалки знаходилась у діапазоні 200 -330 об / хв, а швидкість охолодження водного розчину ДМСО не перевищувала 2 °C / хв. Додавання затравочних кристалів штатного нітраміну до 10 % (ваг.) і 0.5 % (ваг.) модифікатора (ізометилтетрагідрофталевого ангідриду) позитивно впливає на кристалічну форму модифікованого продукту та призводить до утворення кристалів переважно правильної ізометричної форми. Отриманий модифікований нітрамін має характеристики, що задовольняють вимогам для його застосування у ВКС. Ключо...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.